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Abstract

Semanticsimilarity measuregplay an important role in information retrieval and information
integration.Traditional approache$o modelingsemanticsimilarity computethe semanticdistance
between definitions within aingle ontology. This single ontologyis eithera domain-independent
ontology or the result of the integration of existing ontologies. We presentan approachto
computingsemanticsimilarity that relaxesthe requiremenof a single ontology and accountsfor
differences in the levels of explicitness and formalization of the different ontsfmepificationsA
similarity function determinessimilar entity classesby using a matchingprocessover synonym
sets, semantic neighborhoodsd distinguishingfeaturesthat are classifiedinto parts,functions,
and attributes.Experimentakesultswith different ontologiesindicate that the model gives good
resultswhen ontologieshave completeand detailedrepresentationsf entity classesWhile the
combinationof word matchingand semanticneighborhoodmatchingis adequatefor detecting
equivalententity classes,feature matchingallows us to discriminate among similar, but not
necessarily equivalent, entity classes.

1. Introduction

With the growing accesso heterogeneouand independentdata repositories,the treatmentof

differences in the structure and semantics of the data stotiedisierepositoriegplaysa major role

in information systems. Since the first studies on interoperatfogmation systems progresshas
beenmadeconcerningsyntactic(i.e., datatypesandformats)and structuralheterogeneitiegi.e.,

schematic integration, query languages, mtelfaces)1]. As interoperatingnformationsystems
increasingly confront more complex knowledge management issug¢sckimmlogyneededo deal

successfullywith theseissuesmust focus on the semanticsunderlying the data used by those
systems [2].

Recent investigations in informatigatrieval and dataintegrationhaveemphasizedhe use
of ontologiesand semanticsimilarity functionsas a mechanisnfor comparingobjectsthat canbe
retrievedor integratedacrossheterogeneousepositories[3-7]. In this context,an ontology is a
type of knowledge base thdéscribeonceptghroughdefinitionsthat are sufficiently detailedto
capturethe semanticof a domain. An ontology capturesa certainview of the world, supports
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Institute for Environmental Health Sciences, NIH under grant nutiiei01-ES09816-01and by LockheedMartin
Management and Data Systems.
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intensionalqueriesregardingthe contentof a databaseand reflects the relevanceof data by
providing a declarativedescriptionof semantianformationindependentf the datarepresentation
[8].

Thereis greatvariation amongboth the level of detail and logic of different ontology
representations. For example, a terminological ontology is a collection of cateygaagedoby a
partial order that is induced by inclusion. Examplesof such ontologiesinclude the WordNet
ontologyfor nouns[9] andthe SENSUSontologyfor machinetranslation[10]. A different and
more detailedontologyis an axiomatizedontology. An axiomatizedontology is a terminological
ontology whosecategoriesare distinguishedoy axiomsand definitions statedin logic or in some
language that could be automatically translated into logic EXgmplesof axiomatizedontologies
include the GALEN core model [12], the PSL ontology [13], and Cyc [14].

Our current work isnotivatedby the needof new tools that canimprove the retrievaland
integrationof information. In this work we focus on ontologieswhose specificationcomponents
include entity classes,semanticrelationsamongthese classes,and distinguishingfeaturesthat
describe these classes, while we leforefuture work the treatmentof more complexaxiomatized
ontologies. The term entitglassrefersto conceptghat group entitiesor objectsof the real world
into classeof entities.Someexamplesof entity classesare the conceptsof building, lake and
city. Although these entity classes may be associatedantttiesor classesn a databaseschema,
they areusuallyricher in their semanticsbecausehey representconceptsindependentlyof data
representation or modeling.

In environmentsvith multiple information systems,independensystemsmay have their
own intended models and, therefore, their own ontologies [ASjuchenvironmentsthe general
approacho dataintegrationhasbeento mapthe local termsof distinct ontologiesonto a single
sharedontology. Then, the semanticsimilarity is typically determinedas a function of the path
distance between terms in theerarchicalstructureunderlyingthis single ontology [16-19]. Other
methodsto assesssemanticsimilarity within a single ontology are feature matching [20] and
information content [5, 21]. The feature-matchingapproach uses common and different
characteristicbetweenobjectsor entitiesto computesemanticsimilarity, and information content
uses information theory [22] to define a similarity measurein terms of the degree of
informativeness of the immediate super-concept that subsumes two concepts being compared.

The use of a single ontology does ensure complete integration across heterogeneous
information systems; however, this typearftologyis costly if notimpractical,sinceinformation
systemsareforcedto commit to this single ontology and compromisesare difficult to maintain
when new concepts are considered. Usingtherapproachwhich considersscalabilityissuesin
building an ontology, somstudiescreatea sharedontology by integratingexistingones[23-26].
Studiesthat pursueontology integrationhaveto treat overlappingconceptsand inconsistencies
acrossontologies.Like semanticheterogeneityin the databasdield [27], ontology mismatches
occurwhentwo ontologieshave different definitions but their termsthat denotecategoriesthe
components of the category definitions, or the ontological concepts are the same [28].

A strategy forontology integrationis the mappingof local ontologiesonto a more generic
ontology[15, 26, 29]. For example, ONIONS [26] is a methodologyfor ontology analysisand
integration that habeenappliedto large medicalterminologies.Ontology integrationin ONIONS
is done by formally representingall conceptsand by ontologically integrating these concepts
through a set of genericontologies.The use of semanticinterrelationsis anotherapproachfor
ontology integration[25, 30]. For example,OBSERVER s an ontology-basedsystemthat is
enhancedwith relationshipsfor vocabulary heterogeneityresolution [23, 24, 30]. It uses
terminologicalrelations (hyponymy and hypernymy)to map the non-translatedermsin a user
ontology onto terms (which are not synonymousj targetcomponenbntology. This translation
process is recursive amwnsistsof substitutingnon-translatedermswith the intersectionof their
immediate parents or the union of their immediate children.
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Once ontologies have been integrated, similarity measures are appl@dpareconcepts.
A recentwork presentsdifferent measuredor comparingconceptswhose formal definitions
supportinferencesof subsumption,and local conceptsin differentied ontologiesinherit their
definitional structuresrom conceptsan a sharedontology [29]. This study assumeghat the set
intersection of concepts' instanaesn indicationof theseconceptscorrespondenc& hreemain
types of measuredor comparingconceptsdescriptionsare discussedin this work: (1) filter
measures based on a path distance, (2) matching measures based on graph matchingthat make
to-one correspondence between element®nteptsdescriptionsand (3) probabilisticmeasures
that give the correspondence in terms of the joint distribution of concepts.

Although therehave beenpreviousattemptsto compareitems from different ontologies,
thesestudiesare basedon an integratedontology derived from a manual or semi-automatic
process.This work aimsat creatinga computationamodel that assessesemanticsimilar among
entity classesfrom different and independenbntologieswithout constructinga priori a shared
ontology. Our approachto modelingsimilarity is basedon a matchingprocesq20] that usesthe
availableinformation from various ontology specifications(i.e., synonym sets, distinguishing
features,and semanticrelations of entity classes).Such similarity modeling establisheslinks
amongontologieswhile keepingeachontology autonomouslt is a weak form of integration,
because it does not allow deep processes, that is, it cannot be usedtif@yinferencesaboutthe
relationship among other entity classes within a given ontaoghcannotguaranteecomputations
that require particular components of the entity class representation. It pravidies otherhand,
a systematic way to detect which entity classes are most similar totbachnd, therefore which
entity classesare the bestcandidatedor establishingan integrationacrossthe ontologies. Our
measureof similarity could be usedasa first stepin a strongintegrationof ontologieswith user
input asrefinements.t is also usefulin dynamic environmentssuch as the World Wide Web
(WWW), where it may be impracticéb force usersto subscribea priori to a sharedontology.In
such environment, an agent may request information specified as a cdesggtion,and broker
agents that know about the information available in the W¥patewill compareandrecommend
possible candidates to respond the request.

The remainderof this paperis structuredas follows: the descriptionof the entity class
representationsn Section 2 is followed by the presentationof the componentsof similarity
assessmenh Section3. Section4 explainsthe matching-base@pproachto modeling similarity
and defines a similarity function faross-ontologyevaluations An evaluationof the modelusing
different ontologiesand a human-subjecéxperiments presentedn Section5. Conclusionsand
future work are presented in Section 6.

2. Entity Class Representation

In a previous work, we define three basic components faetiresentatiomf entity classesn an
ontology: (1) a setof synonymwords (synset)that denotesan entity class,(2) a set of semantic
interrelationsamongtheseentity classesand(3) a setof distinguishingfeaturesthat characterize
entity classeqg31]. The useof a setof words to denoteentity classesaddresseghe issue of
polysemy and synonymy itme processof linking words to meaning.Polysemyoccurswhenthe
sameword denotesnore than one meaning,and synonymyoccurswhen different words denote
the sameor very similar entity classeq32, 33]. For example,while the word bank can denote
more than one concept (e.gfjrancial institution abuilding of a financial institution, or aloping
land), the set of synonyms constitutbg bank bankingcompany depositoryfinancial institution
identify a unique concept (i.e., a finandiastitution that acceptsdepositsand channelghe money
into lending activities).

Two semantic relations play an important role in the specification of ontologies.
Hyponymy, also calledthe is-a relation [34], is the most commonrelation usedin an ontology.
This relationgoesfrom a specific to a more generalconcept.The is-a relation is transitive and
asymmetric and defines a hierarchical structure where terms ialhéni characteristicsrom their
superordinatéerms.Meronymyis a partial orderingof concepttypes by the part-wholerelation
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[35]. Studyingthe transitivepropertyof part-wholerelations,researcherfiave arguedthat part-
whole relations are not one typé relations,but a family of relations,andthat transitive property
holds for some but not all of these part-whole relations [36-38].

Properties that distinguish entity classes fibmsamesuperclassre called distinguishing
featuresor differentiae[11]. Although the generalorganizationof entity classess given by their
semantidnterrelationsthis information alone may be insufficient to distinguishone classfrom
another.For example a hospitaland an apartmentbuilding have a commonsuperclassuilding;
however, this information falls short when trying to differentiatea hospital from an apartment
building, sincethe is-a relation doesnot indicate the importantdifferencein termsof the entity
classesfunctionality (i.e., a hospitalis a building wheremedicalcareis given and an apartment
building is a group of apartments that serves as living quarters).

Usually, attributesdescribedifferent types of distinguishingfeaturesof a class. They
provide the opportunity to capture details abdassesandtheir valuesdescribethe propertiesof
individual objects(i.e., instancesf a class). We suggesta finer identification of distinguishing
featuresthanthe typical single classificationof featuresinto attributes,andwe classify them into
functions, parts, and attributes. Functionsare intendedto representwhat is done to or with
instances o class.For example the function of a collegeis to educateThus, function features
can be relatedto other termssuch as affordanceq§39] and behavior [40]. Parts are structural
elements of a class, such as the roof and floor of a building. While the part-whole reiatikra
the level of entity class representations, part feataafiaveitemsthat are not alwaysdefinedas
entity classes in an ontology. For example, althoughaadfloor are part featuresof a building,
they may not be necessarilydefined as entity classesin the model and, therefore, they are
connectedo a building througha part-of relation. Treating part functions different from part-of
relationsis needand not an option; otherwise,we will producean endlessprocessof defining
entity class. Finally, attributes correspond to additional characteristics of anctaggthat are not
considered by either the set of parts or functions. For example, sahesatifibutesof a building
are age, user type, owner type, and architectural properties.

We identify different types of distinguishirfgatures(i.e., parts,functions,andattributes)
to enablethe separatemanipulationof them. This distinction, however, has the drawback of
articulating new types of mismatchesassociatedwvith the classificationof features.While an
ontology may group all featuresderattributes,as doesthe SpatialData TransferStandard41],
another ontology may classify them into attribudesl parts, suchas WordNet[9]. Although new
types of mismatches may occur, we propose the classification of distinguishing featunaes to
supporta comparisorbetweencorrespondingharacteristicef entity classes. Another benefit of
consideringdifferent typesof distinguishingfeaturesis that weights could be assignedo these
types of distinguishing features to reflect how important they are in particular contexts [42].

Our representationf entity classesanbe clearly associatedvith the definition of classes
in the object-oriented paradigm. Is-a and part-whole relations are extracted from basic pavadigms
the object-orientedtheory (inheritanceand composition, respectively),while the distinguishing
featuresof our entity classrepresentationyith the exceptionof parts, could be associatedvith
attributes or methods alassesn objectorientation.A formal syntaxof an entity classdefinition
using BNF notation is presented in Table 1 together antbxampleof the definition of the entity
classstadiumderived from a combinatioof WordNetand SDTS. In this specification,primitives
of our language are pointers and words.
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BNF Notation Example: Stadium
<entity class>::=entity_class{ entity class {

name: {<syn_set>} name: {stadium,bowl,arena}

description: <description> description: large often unroofed structure in

is a: <is-a> which athletic events are held

part_of: <part_of> is_a: {construction’

whole_of: <whole_ of> part_of: {}

parts: <parts> whole_of: {athletic_field%

functions: <functions> parts:

attributes: <attributesy {{athletic_field,sports_field,playing_field},

{dressing_room},{foundation},

<is_a>:= {}|{<pts_entity _classes>} {midfield},{spectator_stands,stands},
<part_of>::= {}|{< pts_entity_classes >} {ticket_office, box_office,ticket_booth}}
<whole_of>::= {{< pts _entity_classes >} functions: {{play,compete},{play,practise},
<parts>::= {}|{<syn_sets} {recreate,play}}
<functions>::= {}|{<syn_sets>} attributes: {{architectural_property},
<attributes>::= {}|{<syn_sets>} {covered/uncovered}, {name},
<syn_sets>::= {<syn_set>}|<syn_sets>,{syn_set} {lighted/unlighted}{owner_type},
<syn_set>::= <word>|<syn_set>,<word> {sports_type},{user_type}

<description>::= <worel<description> <word>
<pt_to_entity classes>::= <pointer>|<pt_to_entity class
<pointer>

Table 1: Entity_classdefinition in BNF notation and an examplewith the definition of
stadium (x* denotes a pointer to the entity clags

3. Comparing Entity Class Representations

Different levels of explicitness and formalizatiohthe ontologiesinfluencethe way entity classes
can be compared. Similarity evaluations across ontologies can only be achievedif their
representation®f entity classesshare some components.A natural way to exploit the full
expressivenessf the entity classrepresentationgor a similarity evaluationis to compareeach
component in those representations. Thus,different ontologiesthat haveat leastone common
specification component can still be compared.

Our approachto comparing entity classesacross ontologies uses three independent
similarity assessmentwith respectto synonym sets that denote entity classes,distinguishing
featuresof entity classes,and semanticrelations among entity classes.Synonym sets are
themselvegyroupingsof semanticallyequivalentor very similar words [9]. Thus, our model
considerssynonymsasthe sameentity classand that the similarity betweenan entity classand
itself is always maximumThe goal of comparingsynonymsetsin a cross-ontologyevaluationis
to exploit the general agreement in the use of words and detects equivalent words that likely refer
the sameentity class. Thus, similar synonym sets can only be usedto detect equivalent or
synonymentity classesacrossontologies.As suchit providesa very basic level of similarity
assessmentyhich is an inconclusiveform of similarity assessmensince words can be quiet
different, while the entity classescan still be semanticallysimilar. An exampleis clinic and
hospital which have only a few characters in common and, therefore, their Sitmilgrity is very
low. Their semantisimilarity, however,is fairly high. Inversely,wordsin synonymsetscanbe
the same, whereas the corresponding entity classes are semantically unrelated.

Incorporatingsemanticsnto the similarity measurewe canusedistinguishingfeaturesas
anotherindicator of how similar entity classesare. Unlike synonym-setsimilarity with a binary
resolution of similarity (same or different worda)featuresimilarity handlesgradesof similarity,
since semantically similar entity classes with quite different names are likedyyésomecommon
features. For example, knowing tiséadiumand sports_arenaare placeswhere peoplecanplay a
sport makes these two concepisilar. Diversefeature-basedhodelsfor semanticsimilarity [20,
43-45] that have pointed the need for considecmigiextdependencef the relative importanceof
distinguishing features and asymmetric characteristics of similarity assessments.
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Our approachreatssemanticrelationsthemselvesas the subjectof comparisonSincethe
types of semantic relations are knogeng., is-a or part-wholerelations),the interestingaspeciof
comparing semantic relations is whether target entity classes (i.e., entity thasaesthe subject
of comparison) are related to the same set of entity classagydfentity classesarerelatedto the
same set oéntity classesthey may be semanticallysimilar. For example hospitaland houseare
relatedto the samesuperclassbuilding, and they are semantically similar. Thus, comparing
semantiaelationsbecomesa comparisorbetweenthe semanticneighborhoodsf entity classes.

The semantic neighborhood (N) of entity classa® is the setof entity classest’ whosedistance

d() to the entity classa’ is lessthanor equalto a non negativeintegerr, called the radius of the
semantic neighborhood (Equation 1).

N(a®,r) = {c°} such that Vi d(a®,c*) = 1 (1)

The distancebetweentwo entity classesn the ontology is measuredalong the shortest
path,which is formed by the smallestnumberof undirectedarcs that connectthe entity classes.
Thesearcsrepresentsubclass-superclass part-wholerelations, and so the shortestpath can
represent two sorts of hierarchical relationships. Since distance is a metric function that teisfies
propertyof minimality (i.e., the self-distancas equalto zero), the semanticneighborhoodof an
entity classalso containsthis entity class.For example,the immediate semanticneighborhood
(i.e., semanticneighborhoodof radius 1) of stadiumin a portion of the WordNet ontology

includesthe stadium its superclasstructureand, its partsathletic field and sports arena (Figure
1).

object
7 dructure ™\
o /.' stadium : o
building P \ building
; . ~ . complex
i kr" ‘-j ‘I
| athletic sports /
i, field arena /
N\ //
\‘\\ ,/’/ Hyponymy relation —_—
ST Meronymy relation —_——
Neighborhood' s boundary _ _ _ _
Figure 1: Example of the immediateemanticneighborhoodf stadiumin a portion of the
WordNet Ontology.

Thereexit argumentsagainstthe use of path distancein similarity assessmenty, 21],
which havebeenaddressedby consideringweightedindexing schemaand variable edgeweights
[5, 46]. Although we use path distanceto identity the semanticneighborhoodof entity classes
within their own ontologies, we do not define the similarity measure between neighboblaseds
on this path distance.Path distancedetermineghe neighborhoodsand the similarity of entity
classes depends on the similarity of the entity classes in their neighborhoods.

In orderto integratethe information obtainedfrom the similarity assessmentsf synonym
sets, distinguishing features, and semantic neighborhoods, we peogioskarity function thatis
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definedby the weightedsum of the similarity of eachspecificationcomponeni{Equation2). The
functions S,, S,, and S, are the similarity betweensynonym sets, features,and semantic

neighborhoods between entity clasa@$ ontologyp andb of ontologyq, and w,, ®,, and w, are
the respective weights of the similarity of each specification component.

Sa’,bY=w,-S,(a"bM+w, S@"b"N+w, S (@"b") forw,w,andw,=0 (2)

Weightsassignedo S, S,, andS, dependon the characteristicef the ontologies.Only
commonspecificationcomponentsan be usedin a similarity assessmenand their respective
weights add up to 1.0. Similarity of synonym sets can always be a factor of the similarity
assessment, but when polysemous terms ogithin an ontology, this similarity is lesslikely an
indication of semanticsimilarity amongentity classes.For example,one ontology may include
different meaningsof the word bank (e.g., a financial institution, a sloping of land, and a
building), whereasanotherontology may contain only one meaningof bank (e.g., a financial
institution). Measuringonly similarity of synonymsets, we would assign maximum similarity
between each of the meaningfsbankin the first ontology andthe single meaningof bankin the
second ontology, which is clearly incorrect. Similarity of synonym sets complemeittefature
and semantic-neighborhoosimilarity, on the other hand, can highlight the similarity between
correspondingensesf the term bank. Throughexperiments Section6 attemptsto analyzethe
best setting of weights.

4. A Matching Approach to Similarity Assessment

Using set theory, Tverskj20] defineda similarity measuran termsof a matchingprocess.This

measure produces a similarity value that is not only the result of the corbat@tso the result of

the different characteristicbetweenobjects,which is in agreemento an information-theoretic
definition of similarity [47]. Unlike traditional models basedon semanticdistance[48], the

matching model is not forced satisfy metric properties(i.e., minimality, symmetry,andtriangle

inequality). Thus, for example,the similarity betweenan office building and a building can be

greater than the similarity betweena building and an office building (i.e., an asymmetric
evaluation). Although aathletic fieldis similar to astadium(because both asportsfacilities) and

astadiumis similar to aheater(because bothare constructionsvherepeoplego to attendevents),
anathletic fieldand aheaterare not necessarily similar (i.e., a non-transitive evaluation).

A similarity measurebasedon the normalizationof Tversky’s model and the set-theory

functions of intersectionAMN B) and difference A/ B) is givenin Equation3, wherea andb are
entity classes/A and B corresponddo descriptionsetsof a and b (i.e., synonymsets, set of
distinguishing features, of sef entity classesn the semanticneighborhood)] | is the cardinality

of a set; and is a function that defines the relative importance of the non-common characteristics.

) |AN B
|ANB|+a(a,b) | A/ B|+(1-a(a,b)|B/A|

The relative importance dhe non-commorcharacteristicgshownin the secondandthird
terms of the denominator on the right hand side of Equation 3) allovesyh@ametricevaluationof
semantic similarity. Incorporating such an asymmetréasuras importantbecausef we wantto
make similarity evaluations sensible to people judgmentfiaveto considercognitive properties
of similarity. In this sense,studieshave shown that the perceivedsimilarity from a classto its
superclasss greaterthan the perceivedsimilarity from the superclasdo the class, and that the
superclasss commonly usedas basé of the similarity evaluation[44, 49]. There have given
different explanations for the asymmetric evaluations of similarity. Asymmetry cexplenedby

Sa,b)

forca<1 (3)

! The first term of a comparison is referred to as the target and the second term as the base.
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the relative size and saliencedtinctive featuressets[20], by potentialstimulusbiases,suchas
densityand prototypicality [44, 50], by a natural referencepoint or landmarkfor membersof a
category[49], and by the direction of maximum informativiness[51]. Commonto all these
explanationss the different role that the targetand basepositionsplay in a similarity evaluation.
The mostsalientterm, the item with largerbias, the prototypicalterm, or the term that provides
information to understand thargetare always in thbaseposition.

Our work considerghat a prototypeusedas a baseof a similarity evaluationis a more
generalconceptin a hierarchicalstructureand that the perceivedsimilarity from a classto its
superclasgi.e., a more general concept)is greaterthan the perceivedsimilarity from this
superclasso the class. Thus, the common,as opposedto the different, componentdefinitions
between a class with respect to its superdiasea larger contributionto the similarity evaluation
than the common components iniawersedirection. A naturalapproachto comparingthe degree
of generalization between entity classes is to determingigtencefrom theseentity classedo the
immediate superclass that subsumes them, that is, theiufgastboundin a partially orderedset
[52]. In a cross-ontology evaluation, however, there is no such coraupanclasdetweenentity
classes. An approximatido obtainthe level of generalizatiorof entity classess to considerthat
the two independent ontologies are connectedh@king eachof their roots a direct descendanof
an imaginary and more general entity clasgthing(Figure 2).

anything

entity entity type

| AN

object buiilding stadium  building
complex

artifact

N

structure way

LN

Vv building stadium building
complex

(@)

Figure 2: Connectingindependenbntologies:(a) partial WorNet ontology and (b) partial
SDTS ontology. Anything*denotes an imaginary root)

Using this connectedntology, the function o of the matchingmodelcanbe expressedn
terms of the depth of the entity classesEquation4). The function deptl{) correspondgo the
shortestpath from the entity classto the imaginary root. This depth reflects the degree of
granularity upon which the ontology was designed. For example, consider the ontoldggse
2. While WordNet'shierarchyhasmultiple levels, SDTS definesa large numberof conceptghat
are unrelated,which yields a shallow hierarchy. When building in WordNet (building") is
comparedo building in SDTS (building®), depti{building") is 5 whereasdepthi{building) is 2,
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suchthat o (building®, building’) is 0.28. With this definition of «, evaluationsfrom deepto
shallowontologiesusuallyresultin greatervaluesof similarity than evaluationsfrom shallow to
deep ontologies.

depth(a®)

depth(a®) + depth(b?) depth(a®) < depth(b?)
a(a®,b?) = |
depth(aP) s .
~ depth(a®) + depth(b’) depth(a®) > depth(b®) o

Values ofa are greater than 0 and less thaeagualto 0.5, which correspondgo the case
when entity classeshave the same depth in their respectivehierarchies.The non-common
characteristics between entity classes are considered less importahett@mmoncharacteristics

(ax and o are less than 1), because fwkow the finding that subjectspay more attentionto the
similar than to the different characteristics in a similarity assessment [20, 44].

Using this matching model, we then define similarity functions for eatire@omponents
of the entity class representation (i.e., we define the elements of the set interseEtjoation3),
which we have called word matching, feature matching, and semantic-neighborhood matching.

4.1  Word Matching

Word matching §,) checksthe numberof commonand differentwords in the synonymsetsthat
denoteentity classes.For the ontologiesin Figure 2, the word matching betweenbuilding of

WordNet (buildingw) and building complexof SDTS (building_complexs)s 0.58 for o« = 0.28
(Equation 5). Likewise, word matching betwestadiunt andstadium resultsin 1.0, independent

of the value fow.

S (building”, building_complex®) = ——— |{building} |
|{building} | +0.28|{} | + 0.72 |{complex} | )
-1 _os8
1.72

In casesvhenmorethanoneword exit in the respectivesynonymsetsof entity classes,
word matching finds the most similar terms between synonym sets. For exdnegiéceis used
as a synonynfior building in the WordNetontology (Figure 2), thenthe word matchingbetween
edificé’ and building_complekis 0.58, which is the highestvalue of word matching between

S (edifice”,building_complex®) and S(building®,building_complex®).

4.2  Feature Matching

Featurematching(S,) appliesa matching processover correspondingtypes of distinguishing
featuressuchthat A and B of Equation3 are the setsof featuresof entity classesa and b,

respectively.When both ontologies classify featuresinto parts, functions, and attributes, the
feature matching is given by Equation 6, whgyes, andS, arethe similarity measure®f parts,
functions,andattributes respectivelyand w,, o, and w, aretheir correspondingveights. This
Equation6, represents refinementin the level of detail of featuresimilarity (S, in Equation2),

since it establishes a composition of feature matching by subfyieatures By default,the types
of distinguishing features that are present ingbecificationsof ontologiesare considerecequally
important (i.e., w, =, =w,=0.33). In a previous work, we discussedhow contextual
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information can be used to determine weights of distinguishing featuadsiastion of the degree
of informativenessr diagnosticityof the featuresvithin the domainof an application[42]. When
no classification of distinguishing featuresis given, a global feature-matchingprocessis

performed, that is, all distinguishing features are considered of the same type.

S(@"%b") =w,-S,(@"b") +w, -S(a"b?) +w,-§(a",b")
for w,, w;,andw,=z0andw, +w; +w, =1.0

(6)
In this work we have made a lexicographic, rather than semantic, representationof
distinguishingfeatures.Thus, a distinguishingfeatureis representedy a synonymset, and the
feature matching process applies a string-matching operation over the wibrelsesynonymsets
that refer to the features. String matchowgr distinguishingfeaturesis a strict string matchingin
the sensethat distinguishingfeaturesmatchonly if they arerepresentedby the sameword or by
synonymsetsthat intersect. This processignoressimilarity betweencompoundterms, suchas
betweenlane and number of lanes. A major virtue of such strict string matching is a fast
comparisorof featurenamesfor large ontologieswherethe percentagef partial string matching
among feature names is limited.

To seein detail how we assesghe similarity of distinguishingfeatures,we presentan
extendedexample.Considerthe definitions of stadiumin WordNet (stadiunt) and our ad-hoc
ontology WS (stadiunt®). While WS identifies parts, functions, and attributesof entity classes,
WordNethasonly partsand, therefore,featurematchingis confinedto the comparisonamong
parts of entity classes (Table 2).

Stadium (WS) Stadium (WordNet)
entity_class { entity class {
name: {stadium,bowl,arena} name: {stadium,bowl,arena}
description: large often unroofed structure in description: large often unroofed structure in whict
which athletic events are held athletic events are held

is_a: {construction? is_a: {construction’

part_of: {} part_of: {}

whole_of: {athletic_field% whole_of: {athletic_field* sports_aren#}

parts: {{athletic_field,sports_field,playing_field}, parts: {{athletic_field,sports_field,playing_field},
{dressing_room},{foundation}, {foundation},{midfield} {plate},
{midfield},{spectator_stands,stands}, {sports_arena,field_house} {stands},
{ticket_office, box_office,ticket_booth}} {structural_elements},

functions: {{play,compete},{play,practise}, {standing_room},{tiered_seats}}

{recreate,play}} functions. {}
attributes: {{architectural_property}, attributes: {}}

{covered/uncovered}, {name},
{lighted/unlighted}{owner_type},
{sports_type}{user_type}}

Table 2: Entity_class definition o$tadiumin WS and WordNetxt denotesa pointerto the
entity clasx)

Distinguishingfeaturesin both ontologiesare denotedby synonymsets.We saythattwo
distinguishing features are equivalent if theersectionof their synonymsetsis not empty. Thus,
betweenstadiunt and stadiunt® there are four no-empty synonym sets (i.e., four common
features) (Equations 7).

X = stadiunt®.partsN stadiunt.parts = {{athletic_fieldplaying_field,field,{ foundation,
midfield},{ stand$} (7)
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The set difference between featurestafliunt andstadiunt®, or vice versa,is definedby
the set of featuresthat belongto stadiunt and not to stadiunt® . Thus, thereare five partsin
stadiunt that are not in stadiunt® and, inversely, there are two partsin stadiunt® that are not
stadiunt (Equations 8a-b).

Y = stadiunt.parts- stadiunt®.parts = {{plate},{ sports_area,field_hoursg { standing_roorh
stryctural_elemenid tiered_seatg (8a)

Z = stadiunt®.parts- stadiunt.parts = {{dressing_roorj
ticket_office,box_office,ticket_bod}h (8b)

The similarity measurebetweendistinguishingfeaturesof stadiunt and stadiunt® is then
determined byEquation9 for a equalto 0.45. This equationis equivalentto Equation3 when A

andB are replaced by the set of partstdiunt andstadiunt®, respectively.
S (stadium®, stadium™) = S, (stadium®, stadium")
_ X | = 4 RN C)
| X |+0.45|Y |+0.55|Z | 4+0.45*5+0.55* 2

4.3  Semantic-Neighborhood Matching

Semantic-neighborhooahatching(S,) comparesentity classesn semanticneighborhoodsased
on synonym_set or feature matching. Semantic-neighborhood matgh)imgtl radiusr between
entity classes’” andb® of ontologieg andq, respectivelyis a function of the cardinality (| |) tfe

semanticneighborhoodgN) andthe approximatecardinality of the setintersection(N,) between
these semantic neighborhoods (Equation 10).

a’N_ b
al,b%r) = n ith
S( )= 0 b a(@.b) 0@ a" N, b + (- a(@ b)) -0 2’ M bir)
N(a®,r)|=|a® N, b9 | if [N(a”, P b
a0 1 < NGO 0, B NGl 0, 0)
0 otherwise

The intersectionover semanticneighborhoodss approximatedoy the similarity of entity
classes across neighborhoods (Equation 11), vafere the semanticsimilarity of entity classes;

a” and b are entity classes in the semantic neighborhoa ahd b*, respectively; andn andm
are the numbers of entity classes in the corresponding semantic neighborhoods.

|a® N, b?|=

I=n

E maxS(af,bf)} - pS(@”,b") , where
J=m

1 if Sa”b?)=maxSa’,b’)
= J=m and
0 otherwise
S@",b") = 0, S(a",b) + 0,S,(a",b") with 0 < w, + w, <1 (11)

SinceY) in Equation 11 isan asymmetricfunction, the approximatecardinality of the set-
intersectionis also asymmetric.The approximateset intersectionmatchesentity classeswith
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maximum similarity. Thisnatchingexcludesthe similarity betweenthe two entity classegshat are
actually being compared, which woube a redundanevaluation.lt allows multiple entity classes
in a semanticneighborhoodo matchthe sameentity classin a secondsemanticneighborhood.
Thus, the approximatecardinality set intersectionmay reach a value greater than the actual
cardinality of the setof entity classesn the secondsemanticneighborhoodlIn sucha case,the
model considerghe maximumbetweenthe approximatecardinality of the setintersectionandthe
cardinality of the semanticneighborhood No matchingbetweenentity classesof the samerole
(i.e., superclass-superclass or subclass-subclass) is enforced, hisaype of correspondence
emphasizesimilarity amongclasseswith the samesuperclasswhile ignoring similarity between
classes and their superclasses.

For example,considerWordNet and SDTS and the evaluationbetweenstadiunt and
stadiumi (Figure 2). In afirst instancewe considera radiusof 1 and comparehow many entity
classesin the immediate neighborhood(i.e., immediate superclassessubclassesparts, and
wholes)are commonbetweenstadiunt and stadium (Equations12a-b). Semantic-neighborhood
matching takes eaatntity classin N(stadiunt,1) andfinds the correspondingnostsimilar entity
class inN(stadiun,1). Based on wordnd featurematching,the only similar entity classesn the
neighborhoodsN(stadiunt,1) and N(stadiunj,1) are stadiunf and stadiuni entity classes
themselveswhich arethe original entity classegdhat are comparedIn this case, ¢ is zero and,
therefore the semantic-neighborhood matching is also equal to zero.

N(stadium®,1) = {stadium”,structure”, athletic_ field",sports_arena"} (12a)

N(stadium®,1) = {stadium®,entity _type®} (12b)

Analogousto the notion of shallow and deep equality in object orientation[53, 54],
semantic-neighborhooahatchingdefinesshallow and deepmatchingdependingon the radius of
the semanticneighborhoodShallow matchingcorresponds$o an evaluationthat is basedon the
similarity of the immediate neighborhoodof entity classes(i.e., radiusis 1). For semantic
neighborhoodsvith radius greaterthan 1, deepmatchingis the evaluationthat is basedon the
similarity of the end nodes (i.e., leaved)the semanticneighborhoodThesenodesare the entity
classedocatedat the end of the pathin the networkof semanticrelationsthat connectthe entity
classes in the semantic neighborhood. A similar notion of shallow and deefbeauigliedto the
feature matching among parts if we had used a senegigationthereinsteadof a lexicographic
evaluation.

5. Cross-Ontology Evaluations

There are few studies that have addresseduhéty of resultsof similarity assessment$n cases
of evaluationswithin a single ontology, these studies analyze the correlation between the
computationakimilarity and answersof a human-subjectesting[5, 21, 55]. For cross-ontology
evaluationshowever,no work hasattemptedo correlatecomputationalsimilarity with people's
judgments. In the context of cross-ontology evaluations, qualgyatiationshasbeenaddressed
on the basisof anintensionalor extensionaknalysisof query expansionto multiple ontologies.
OBSERVER [30]usesintensionalaswell extensionabhnalysisto definelower andupperbounds
of query expansiobasedon a manuallydefinedsubsumptiorrelation.In an effort to creatingan
environment to study algorithms that compute description compatibility, Weinstein and
Birmingham [29] used an automatic generatdrontologiesand comparedifferent measuregor
determiningsemanticcompatibility, which they define as the probability that an instanceof a
recommended answer satisfies a request. Unfortunatelyritiearthe generalityof their results
due to the unrealistic scenarios taking from the automatic generation of ontologies.

We designednew experimentsthat differ significantly from the previous experiments.
First, we have a model faimilarity evaluationsacrossindependenbntologiesthat are not linked
to atop level sharedontology. Second the model createsautomatically,as opposedo manually,
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associationsacrossontologies. Third, our experimentsuse already available ontologies (i.e.,
WordNertand SDTS)that differ in their ontology specificationas well as level of specificity of
their intendedpurposes(i.e., generalversusspecific domain). Forth, we use a human-subject
testing that defines sensible results of tbeputationaimodelfor evaluationsamongsemantically
relatedentity classesFinally, we usean intensionalapproach(i.e., comparingonly entity class
definitions rather than instances of classes) in our experiments.

Our application work is focused on the spatiamainso, our experimentemploy subsets
of the two readilyavailableresourcesWordNet (334 definitions)[9] and SDTS (498 definitions)
[41] that deal with spatial concepidlordNetis a widely usedterminologicalontology[4, 56-58]
that organizes concepts in setsghonyms(synsets)connectedy semanticrelations.It contains
approximatelyl 18,000words organizedinto 90,000 setsof synonyms,which are semantically
interrelateddependingon their syntactic category. SDTS was createdto provide a common
classificationand definitions of spatial featuresusedin processeof spatial data transfer. It
containsa setof entity types(approximately200 standardermsand 1300 “included” terms)and
their corresponding attributes. We selected all the standard te®BST& plus includedtermsthat
match terms in the WordNet ontology. From WordNet, we selected all entity classeshaimese
matchtermsin SDTS. Although the selectionof conceptsbasedon word matching already
establishes a degree of similarity between concepts, our experiments wilhstteverd matching
is useful, but insufficient, to identify corresponding entity classes across ontologies.

Finally, we create a new ontology WS (2&&finitions) from the combinationof WordNet
and SDTS (WS) to exploda more completedefinition of entity classeqi.e., semantiaelationsas
well as distinguishingfeatures).This new ontology has less entity classesthan the union of
WordNetand SDTS, since we group someof the intermediateentity classesn the hierarchical
structure derived from WordNet that have just one subclass. To this new WS, SDTSHearlisgys
of entity classesto be defined, their partial definition via is-a relations, and their attributes.
WordNet complements these definitions with synonym, part-whole, and is-a relati@aslition,
functionsin the WS definitions were derived from verbs explicitly usedin the natural-language
descriptionof entity classesaugmentedby commonsense.Since the ontologiesusedin these
experiments vary in terms dbmain(i.e., generalvs. specific) and specificity (semanticrelations
vs. distinguishing features) (Table 3), the potential conclusiotieeséexperimentsan provide a
goodindicationof the behaviorof the similarity model when usedwith such different kinds of
ontologies.
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Characteristcs SDTS WordNet WS
Words
Synonymy 4 v
Polysemy v v v
Relations
Is-a v v v
Part-of v v
Whole-of v v
Features
Parts v v
Functions 4
Attributes v v

Table 3: Characteristics of the specification components of SDTS, WordNet, and WS.

Two typesof experimentsvere performedthat correspondto two different goals: (1)
searchfor equivalentor most similar entity classesacrossontologiesand (2) rank similarity
between an entity class one ontology and a setof entity classesn a secondontology. The first
type of similarity evaluation is useful for ontology integratisimce mostsimilar entity classesare
the best candidatefor such integration. The secondexperimentanalyzeshow well the model
performs for finding similar, and not necessarily the most sinalaity classesacrossontologies.
This type of calculation isisefulfor informationretrieval,becausat providesa rangeof possible
answersdependingon conceptuallysimilar terms and gives the usersthe possibility to choose
amongthem. For example,considerthe caseof a userwho is looking for a stadiumin a certain
location. A system can search in one or multiple resources and find that there is acttadiym
but also otherkinds of sportsfacilities, suchasan athletic field or a tennis court To do so, the
system should be able to calculate semantic similarity and give the user a set oaresvkexs. To
run these experiments, a prototype of the similarity model was implemented in C++.

5.1 Experiment 1: Equivalent or Most Similar Entity Classes

The experimentwas done by using different combinationsof ontologiesin cross-ontology
evaluations (Table 4). These combinations correspodi/évsegradesof similarity amongentity
classes and components of the entity class representationgndluelg identical ontologies(1-2),
ontology and sub ontology (3), overlapping ontologies (4), and different ontologies (5).

Case Ontology-Ontology Description

1 WordNet-WordNet Same ontology with is-a and part-whole relations
2 SDTS-SDTS Same ontology with is-a relations and attributes
3 WordNet-WordNet* Subset with same specification components
4 WordNet*-WS Overlapping semantic relations and attributes
5 WordNet*-SDTS* Different ontologies and specification components
Table 4: Cases of cross-ontologyvaluationsSymbol* denotessmall subsetf the initial

ontology.
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Analogously to standardevaluation measuresin information retrieval based on the
relevance of data retrieved [59], we adapt the conceptsalf andprecisionto evaluateéhe results
of the model. Fothis work, recall correspondgo the proportionof similar entity classeghat are
detectedby the model (Equation13a), while precisionis the proportionof entity classesdetected
by the model that are actually similar (Equation 13b), whasethe sebf similar entity classesB
is the set of similar entity classes calculated by the model; and | | is the counting measure.

recall = AN B| (13a)
Al
precision=% (13b)

A critical issue for calculating recall and precision ikb@w what entity classesarein fact
similar, which correspondsgo the ideaof knowing the relevanceof datain information retrieval.
This determinatioris simplified by the fact that we want to detectsynonymsor equivalententity
classes.For example,building in WordNet (building") is similar to building (building®) and
building_complexIfuilding_compley in SDTS; howeveronly building"-building® is considered,
because this pair has the highest similarity.

In the first two evaluations (i.e., WordNet-WordNet and SDTS-SDTS), each entityrclass
the first ontology has itsorrespondingentity classin the secondontology, sincewe comparethe
ontologies with themselves and wepectto obtainthe highestvalue of recall and precision(i.e.,
an upperboundfor caseswith equivalentcomponentsof entity class specification). When the
definitions in the first ontology are a supersetf the definitions in the secondontology (i.e.,
WordNet-WordNet*), the model shoufthd the correspondingentity classef the sub-ontology
in the super-ontologyCase4, WordNet*-WS*, representshe combinationof ontologieswhere
the specificationcomponentsn the first ontology are a subsetof the specificationcomponentsn
the secondontology. In this case,WordNet has parts and semanticrelations,whereasWsS has
parts, functions, and attributesas well as semanticrelations. From the manual integration of
WordNetand SDTSinto WS we specifiedwhich entity classesn WordNet correspondo what
entity classes in WS. A more complex situatomturswhen specificationcomponentdhiave major
differenceg(i.e., WordNet*-SDTS*). To simplify this task, we considera particular application
that dealwith spatialentity classegpresenton a university campusmap. Thus, forty-eight entity
classesn SDTS where selected,and a manualprocessfound twenty-two correspondingentity
classes between WordNet and SDTS.

The experimentcompareall entity classesacrossontologiesusing different weights for
synonym-setfeature,and semantic-neighborhoonhatching.We show in this paperonly those
resultsthat representiower and upper boundsin termsof recall and precisionfor each of the
combination of ontologies. Table 5 shoresultsusing a thresholdof 75%, thatis, entity classes
with lower similarity than75% were disregardedUsing a lower thresholdincreasegecall, but
decreases precision.
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Case Weights (%) Recall Precision

W, w, , (%) (%)
WordNet-WordNet 50 0 50 100 97
WordNet-WordNet 0 100 0 48 10
SDTS-SDTS 50 0 50 100 100
SDTS-SDTS 0 0 100 100 1
WordNet-WordNet* 50 0 50 99 98
WordNet-WordNet* 0 50 50 28 14
WordNet*-WS 100 0 0 100 78
WordNet*-WS 50 0 50 55 98
WordNet*-WS 0 50 50 0 0
WordNet*-SDTS* 100 0 0 100 42
WordNet*-SDTS* 50 0 50 50 92
WordNet*-SDTS* 0 100 0 0 0

Table 5: Recall and precision of evaluations with threshold equal to 75%.

Symbol * denotes small subsets of the entire ontology.

We obtainedobviousresultsfor casesof comparingontologieswith themselvesRecall
basedon word matchingis 100%, since correspondingentity classeshave the samenames.
Precision, however, is not necessarily 100% for cases with identical ontologiestioeipresence
of polysemousterms. A more general observationindicates that feature matching alone is
insufficient for detectingthe most similar entity classesacrossontologies.Many entity classes
sharecommonfeaturesor havea commonsuperclassrom which they inherit commonfeatures.
This situationis particularly true for the SDTS ontology, which hasa low value for precision.
SDTS has distinguishing features in its entity classes' definitions, bmtiinsically natureof the
general top level entity classes withdehturesandthe lack of precisionof featuresto distinguish
entity classes produce bad results.

Recall and precisiondecreasalrastically for combinationsof weights that ignore word
matching. The combination @ford and semantic-neighborhoaehatchingobtains,in mostcases,
the best evaluations oécall and precision.Complementingvord matchingwith featurematching
tends to increase precision, but decreases résallias expectedthe worst resultsare associated
with evaluationsover different ontologies(i.e., WordNet*-WSand WordNet*-SDTS*).In these
cases,precisionis still over 85%, but recall is considerablylower (50%-55%). For different
ontologies, introducing feature matching had a negative effect in the performance of the model.

This experimenthasshownthat the resultsof the similarity modelare highly sensitiveto
the component®f the entity classrepresentationsAs ontologiessharemore componentsn their
entity class specifications, the model produces more accurate results. Thuspur@ammentwith
multiple ontologies,a similarity function should emphasizeéhose componentf an entity class
representatiorthat are likely sharedby all ontologies.In an ideal scenariowhere ontology
specificationsare complete (i.e., entity class representationcontains semantic relations and
distinguishing features) and detailed (i.e., features differentiate elaiges)the similarity model
is a good estimator for similarity. In a realistic scenario with different ontoldgiegever,the test
found that synonym sets and semantic neighborhood are more stable specification cortipoments
the setof featuresassociatedvith entity classesThus, semanticorganizationof entity classess
more similar acrossontologiesthan the distinguishingfeaturesusedto describethose entity
classes.
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5.2  Experiment 2:Rank of Similarity

This experimentconsistsin cross-ontologyevaluationsthat are transformedinto a rank of
similarity. The evaluationscomparean entity classin an ontology (e.g., stadiunm) with a reduced
setof entity classeslefinedin a different ontology (e.g., stadium athletic field, ballpark, tennis
court, commonsbuilding, theater museumlibrary, transportationsystem house sport areng.
We selectedevaluationsetweenSDTS-WSand WordNet-WS, becausehey representdifferent
levels of detalil in the entity classpresentationand becausa/VS hasour proposedepresentation
of entity classedhat allows the explorationof eachof the componentsf the evaluationacross
ontologies (i.e., word matching, feature matching, and semantic-neighborhood matchiaigoWe
consideredthe evaluation between WS-WS, since it correspondsto the best scenariowith
equivalent definitions and can indicate hawell the similarity modelworks for evaluationswithin
a single ontology. We chosethe entity classstadiumas the targetof our evaluations,since this
entity classesvas found equivalentacrossontologiesso, similar entity classego stadiumin one
ontology should be similar tstadiumin a second ontology.

Since we wantedto evaluatethe quality of the results derived from the computational
model, we use a human-subject testWg decidedto designa new experimentratherthanusing
previous experiments of similarity assessmeithin a single ontology[5, 21, 55], becausghese
previous studies compare quite different entity clagseg, car, automobile food, birth, brother,
noon so on) without focusing on distinguishing more related eol#tgseqe.g., stadium athletic
field, sports arenapark, so on). We askedsubjectsto rank the similarity amongthe setof entity
classesbasedon the definitionsin the WS ontology that were given at the beginning of the
experiment. Thirty-seven students (twenty female and seventeen male) of an undergrraglishite
classat the University of Maine participatedn the experimentFor all subjects,U.S. Englishis
their mother tongue and their agesrange from 18 to 36 years old. Subjectswere paid for
participatingin the experimentand answeredhe questionsat the sametime and in lessthan 10
minutes without pressure.

The subjects’ answers varied in the number of ranks used to classify entity classed. Most
them, however, assigned to eamttity classa differentrank. To comparesubjects’answers tied
ranks werenormalizedby the meanof the ranksfor which they tie, assuminga numberof ranks
equal to the number of entity classes compared [B8#.normalizedanswerswere averagedthen
rankedand normalized,if needed,to obtain the final ranks, which are comparedagainstthe
similarity model. We found no significant evidence for differences based on gender, so the result
given as the totadf responsesSubjectsfound that the mostsimilar entity classedo a stadiumin
decreasingorder were sports areng ball park, athletic field, tennis court, theater museum
building, commonsglibrary, house andtransportation

The model evaluationsusedthreetypesof weight settings:the default(i.e., w,: 0.33; w,:

0.33; w,: 0.33), thebestcombinationof weightsthat was found in the previousexperiment(i.e.,

o, 0.5; w;: 0; w, 0.5), and feature-basedimilarity evaluation(i.e., w,: 0; w,: 100; w,: 0).

Figures3a-c presentthe model’s resultswith the three different settingsand the combinations
SDTS-WS,WordNet-WS,and WS-WS, respectively.In thesegraphs, the ordering of entity

classes in the axis corresponds to the subjects’ responses in decreasing order.
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The correlationbetweenthe model’'s resultsandthe subjects’ responsesvas estimatedoy
the Spearman rank correlation coefficient [61], since this coefficient atlwatisticaltestbased
on rankedanswers.The teststatisticis alsoa measureof associationrsuchthatit is equalto +1
when there is a perfect direct relationship betweenrankings. Table 6 gives the correlation
coefficient under the presence of ties for each combination of ontologies and each weight setting.

Ontologies Synset-Feature-Neighborhood  Synset-Neighborhood Feature

o, 33.3,w, 33.3,0w,; 33.3 o, 50, w,: 50 o, 100
SDTS-WS 0.48 -0.34 0.37
WordNet-WS 0.68 -0.34 0.71
WS-WS 0.96 -0.34 0.97
Table 6: Correlation coefficient for similarity ranks in cross-ontology evaluations.

Like the formerexperimentthis experimenthasshown that the performanceof the model
dependson how compatible are the ontology specifications.As expectedthe best results are
between WS and WS whereas the worst results are betweeng8IldV¥ES. The bestcombination
of weightsdetectedn the former experimentgavethe worst valuesof correlationfor eachof the
ontology combinations. This bad correlation is due to thetf@atthe modelwith this combination
of weights detects the most similar entity class and nothing else.

Sincethe comparisorbetweenthe modeland the subjects’responsess only possiblein
terms of the entity classes that subjects vesieedto rank, ranking of the model’'sresultsis done
over the similarity values obtained for this eéentity classesTherefore,an entity classthatwas
ranked second within the small set of entity classes couldribedfifth with respecto the whole
ontology. This situationcould misleadthe interpretationof the resultsbasedon the measuref
recall and precision;however,the mostimportant conclusionof this experimentis that feature
matchingis importantfor detectingsimilar entity classeswithin an ontology or the similarity of
semanticallyrelated entity classesacrossontologies. The assignmentof the weights to the
similarity of thespecificationcomponentsannotonly dependon the ontology characteristicshut
also on the goal of the similarity assessment (i.e., ontology integration vs. information retrieval).

6. Conclusions and Future Work

We have presenteca model for semanticsimilarity acrossdifferent ontologies. The similarity
modelprovidesa systematiovay to detectsimilar entity classesacrossontologiesbasedon the
matchingprocessof eachof the specificationcomponentsn the entity classrepresentation.e.,
synonymsets, distinguishingfeatures,and semanticneighborhoods).The similarity model is

useful as a first stepin an ontology integration,sinceit may detectmost similar entity classes
acrossontologies.Thesesimilar entity classescould be then analyzedwith userinput to derive
semantic relations, such as is-a relation or synonym relations, to create an integrated of ontology.

Experimentsusing the similarity model with different ontologiesindicated that different
componentf entity classrepresentation$ave different effects on the similarity evaluations.
Synonym sets and semantic neighborhoods are good components todetediamgequivalentor
most similar entity classesacrossontologies.Distinguishing featuresare suitable for detecting
entity classeghat are somewhasimilar, thatis, entity classeghat are not synonymsandthat are
locatedfar apartin the hierarchicalstructure (e.g., stadiumand athletic field in the WordNet
ontology).

This work hasconcentratean entity classesand hascompareddistinguishingfeaturesin
termsof a strict string matchingbetweensynonymsetsthat refer to thosefeatures.The semantic
similarity amongfeatures however, has beenleft for future work. For example,parts are also
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entity classes that could be semantically compared in a recursive process. Verbs calatddizy
the semanticrelation entailment33] (e.g., buy and pay) or could be formally specifiedsuchthat
they could be semanticallycompared.Likewise, the specificationof attributesin termsof their
domains(i.e., the set of possiblevalues)could lead to exhaustivesimilarity evaluationsamong
entity classes.
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