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Abstract
Semantic similarity measures play an important role in information retrieval and information
integration. Traditional approaches to modeling semantic similarity compute the semantic distance
between definitions within a single ontology. This single ontology is either a domain-independent
ontology or the result of the integration of existing ontologies. We present an approach to
computing semantic similarity that relaxes the requirement of a single ontology and accounts for
differences in the levels of explicitness and formalization of the different ontology specifications. A
similarity function determines similar entity classes by using a matching process over synonym
sets, semantic neighborhoods, and distinguishing features that are classified into parts, functions,
and attributes. Experimental results with different ontologies indicate that the model gives good
results when ontologies have complete and detailed representations of entity classes. While the
combination of word matching and semantic neighborhood matching is adequate for detecting
equivalent entity classes, feature matching allows us to discriminate among similar, but not
necessarily equivalent, entity classes.

1 . Introduction
With the growing access to heterogeneous and independent data repositories, the treatment of
differences in the structure and semantics of the data stored in those repositories plays a major role
in information systems. Since the first studies on interoperating information systems, progress has
been made concerning syntactic (i.e., data types and formats) and structural heterogeneities (i.e.,
schematic integration, query languages, and interfaces) [1]. As interoperating information systems
increasingly confront more complex knowledge management issues, the technology needed to deal
successfully with these issues must focus on the semantics underlying the data used by those
systems [2].

Recent investigations in information retrieval and data integration have emphasized the use
of ontologies and semantic similarity functions as a mechanism for comparing objects that can be
retrieved or integrated across heterogeneous repositories [3-7]. In this context, an ontology is a
type of knowledge base that describes concepts through definitions that are sufficiently detailed to
capture the semantics of a domain. An ontology captures a certain view of the world, supports
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intensional queries regarding the content of a database, and reflects the relevance of data by
providing a declarative description of semantic information independent of the data representation
[8].

There is great variation among both the level of detail and logic of different ontology
representations. For example, a terminological ontology is a collection of categories organized by a
partial order that is induced by inclusion. Examples of such ontologies include the WordNet
ontology for nouns [9] and the SENSUS ontology for machine translation [10]. A different and
more detailed ontology is an axiomatized ontology. An axiomatized ontology is a terminological
ontology whose categories are distinguished by axioms and definitions stated in logic or in some
language that could be automatically translated into logic [11]. Examples of axiomatized ontologies
include the GALEN core model [12], the PSL ontology [13], and Cyc [14].

Our current work is motivated by the need of new tools that can improve the retrieval and
integration of information. In this work we focus on ontologies whose specification components
include entity classes, semantic relations among these classes, and distinguishing features that
describe these classes, while we leave for future work the treatment of more complex axiomatized
ontologies. The term entity class refers to concepts that group entities or objects of the real world
into classes of entities. Some examples of entity classes are the concepts of building, lake, and
city. Although these entity classes may be associated with entities or classes in a database schema,
they are usually richer in their semantics because they represent concepts independently of data
representation or modeling.

In environments with multiple information systems, independent systems may have their
own intended models and, therefore, their own ontologies [15]. In such environments, the general
approach to data integration has been to map the local terms of distinct ontologies onto a single
shared ontology. Then, the semantic similarity is typically determined as a function of the path
distance between terms in the hierarchical structure underlying this single ontology [16-19]. Other
methods to assess semantic similarity within a single ontology are feature matching [20] and
information content [5, 21]. The feature-matching approach uses common and different
characteristics between objects or entities to compute semantic similarity, and information content
uses information theory [22] to define a similarity measure in terms of the degree of
informativeness of the immediate super-concept that subsumes two concepts being compared.

The use of a single ontology does ensure complete integration across heterogeneous
information systems; however, this type of ontology is costly if not impractical, since information
systems are forced to commit to this single ontology and compromises are difficult to maintain
when new concepts are considered. Using another approach, which considers scalability issues in
building an ontology, some studies create a shared ontology by integrating existing ones [23-26].
Studies that pursue ontology integration have to treat overlapping concepts and inconsistencies
across ontologies. Like semantic heterogeneity in the database field [27], ontology mismatches
occur when two ontologies have different definitions but their terms that denote categories, the
components of the category definitions, or the ontological concepts are the same [28].

A strategy for ontology integration is the mapping of local ontologies onto a more generic
ontology [15, 26, 29]. For example, ONIONS [26] is a methodology for ontology analysis and
integration that has been applied to large medical terminologies. Ontology integration in ONIONS
is done by formally representing all concepts and by ontologically integrating these concepts
through a set of generic ontologies. The use of semantic interrelations is another approach for
ontology integration [25, 30]. For example, OBSERVER is an ontology-based system that is
enhanced with relationships for vocabulary heterogeneity resolution [23, 24, 30]. It uses
terminological relations (hyponymy and hypernymy) to map the non-translated terms in a user
ontology onto terms (which are not synonymous) in a target component ontology. This translation
process is recursive and consists of substituting non-translated terms with the intersection of their
immediate parents or the union of their immediate children. 
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Once ontologies have been integrated, similarity measures are applied to compare concepts.
A recent work presents different measures for comparing concepts whose formal definitions
support inferences of subsumption, and local concepts in differentied ontologies inherit their
definitional structures from concepts in a shared ontology [29]. This study assumes that the set
intersection of concepts' instances is an indication of these concepts' correspondence. Three main
types of measures for comparing concepts descriptions are discussed in this work: (1) filter
measures based on a path distance, (2) matching measures based on graph matching that make one-
to-one correspondence between elements of concepts' descriptions, and (3) probabilistic measures
that give the correspondence in terms of the joint distribution of concepts.

Although there have been previous attempts to compare items from different ontologies,
these studies are based on an integrated ontology derived from a manual or semi-automatic
process. This work aims at creating a computational model that assesses semantic similar among
entity classes from different and independent ontologies without constructing a priori  a shared
ontology. Our approach to modeling similarity is based on a matching process [20] that uses the
available information from various ontology specifications (i.e., synonym sets, distinguishing
features, and semantic relations of entity classes). Such similarity modeling establishes links
among ontologies while keeping each ontology autonomous. It is a weak form of integration,
because it does not allow deep processes, that is, it cannot be used for making inferences about the
relationship among other entity classes within a given ontology and cannot guarantee computations
that require particular components of the entity class representation. It provides, on the other hand,
a systematic way to detect which entity classes are most similar to each other and, therefore, which
entity classes are the best candidates for establishing an integration across the ontologies. Our
measure of similarity could be used as a first step in a strong integration of ontologies with user
input as refinements. It is also useful in dynamic environments, such as the World Wide Web
(WWW), where it may be impractical to force users to subscribe a priori  to a shared ontology. In
such environment, an agent may request information specified as a concept description, and broker
agents that know about the information available in the WWW space will compare and recommend
possible candidates to respond the request.

The remainder of this paper is structured as follows: the description of the entity class
representations in Section 2 is followed by the presentation of the components of similarity
assessment in Section 3. Section 4 explains the matching-based approach to modeling similarity
and defines a similarity function for cross-ontology evaluations. An evaluation of the model using
different ontologies and a human-subject experiment is presented in Section 5. Conclusions and
future work are presented in Section 6.

2. Entity Class Representation

In a previous work, we define three basic components for the representation of entity classes in an
ontology: (1) a set of synonym words (synset) that denotes an entity class, (2) a set of semantic
interrelations among these entity classes, and (3) a set of distinguishing features that characterize
entity classes [31]. The use of a set of words to denote entity classes addresses the issue of
polysemy and synonymy in the process of linking words to meaning. Polysemy occurs when the
same word denotes more than one meaning, and synonymy occurs when different words denote
the same or very similar entity classes [32, 33]. For example, while the word bank can denote
more than one concept (e.g., a financial institution, a building of a financial institution, or a sloping
land), the set of synonyms constituted by bank, banking company, depository financial institution
identify a unique concept (i.e., a financial institution that accepts deposits and channels the money
into lending activities).

Two semantic relations play an important role in the specification of ontologies.
Hyponymy, also called the is-a relation [34], is the most common relation used in an ontology.
This relation goes from a specific to a more general concept. The is-a relation is transitive and
asymmetric and defines a hierarchical structure where terms inherit all the characteristics from their
superordinate terms. Meronymy is a partial ordering of concept types by the part-whole relation
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[35]. Studying the transitive property of part-whole relations, researchers have argued that part-
whole relations are not one type of relations, but a family of relations, and that transitive property
holds for some but not all of these part-whole relations [36-38].

Properties that distinguish entity classes from the same superclass are called distinguishing
features or differentiae [11]. Although the general organization of entity classes is given by their
semantic interrelations, this information alone may be insufficient to distinguish one class from
another. For example, a hospital and an apartment building have a common superclass building;
however, this information falls short when trying to differentiate a hospital from an apartment
building, since the is-a relation does not indicate the important difference in terms of the entity
classes’ functionality (i.e., a hospital is a building where medical care is given and an apartment
building is a group of apartments that serves as living quarters).

Usually, attributes describe different types of distinguishing features of a class. They
provide the opportunity to capture details about classes, and their values describe the properties of
individual objects (i.e., instances of a class). We suggest a finer identification of distinguishing
features than the typical single classification of features into attributes, and we classify them into
functions, parts, and attributes. Functions are intended to represent what is done to or with
instances of a class. For example, the function of a college is to educate. Thus, function features
can be related to other terms such as affordances [39] and behavior [40]. Parts are structural
elements of a class, such as the roof and floor of a building. While the part-whole relations work at
the level of entity class representations, part features can have items that are not always defined as
entity classes in an ontology. For example, although roof and floor are part features of a building,
they may not be necessarily defined as entity classes in the model and, therefore, they are
connected to a building through a part-of relation. Treating part functions different from part-of
relations is need and not an option; otherwise, we will produce an endless process of defining
entity class. Finally, attributes correspond to additional characteristics of an entity class that are not
considered by either the set of parts or functions. For example, some of the attributes of a building
are age, user type, owner type, and architectural properties.

We identify different types of distinguishing features (i.e., parts, functions, and attributes)
to enable the separate manipulation of them. This distinction, however, has the drawback of
articulating new types of mismatches associated with the classification of features. While an
ontology may group all features under attributes, as does the Spatial Data Transfer Standard [41],
another ontology may classify them into attributes and parts, such as WordNet [9]. Although new
types of mismatches may occur, we propose the classification of distinguishing features in order to
support a comparison between corresponding characteristics of entity classes. Another benefit of
considering different types of distinguishing features is that weights could be assigned to these
types of distinguishing features to reflect how important they are in particular contexts [42].

Our representation of entity classes can be clearly associated with the definition of classes
in the object-oriented paradigm. Is-a and part-whole relations are extracted from basic paradigms of
the object-oriented theory (inheritance and composition, respectively), while the distinguishing
features of our entity class representation, with the exception of parts, could be associated with
attributes or methods of classes in object orientation. A formal syntax of an entity class definition
using BNF notation is presented in Table 1 together with an example of the definition of the entity
class stadium derived from a combination of WordNet and SDTS. In this specification, primitives
of our language are pointers and words.
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BNF Notation Example: Stadium
<entity_class>::= entity_class {
                              name: {<syn_set>}
                              description: <description>
                              is_a: <is-a>
                              part_of: <part_of>
                              whole_of: <whole_of>
                              parts: <parts>
                              functions: <functions>
                              attributes: <attributes>}

<is_a>::= {}|{<pts_entity_classes>}
<part_of>::= {}|{< pts_entity_classes >}
<whole_of>::= {}{< pts _entity_classes >}
<parts>::= {}|{<syn_sets>}
<functions>::= {}|{<syn_sets>}
<attributes>::= {}|{<syn_sets>}
<syn_sets>::= {<syn_set>}|<syn_sets>,{syn_set}
<syn_set>::= <word>|<syn_set>,<word>
<description>::= <word>|<description> <word>
<pt_to_entity_classes>::= <pointer>|<pt_to_entity_classes>,

<pointer>

 entity_class {
     name: {stadium,bowl,arena}
     description: large often unroofed structure in

  which athletic events are held
     is_a: {construction*}
     part_of: {}
     whole_of: {athletic_field*}
     parts:

{{athletic_field,sports_field,playing_field},
  {dressing_room},{foundation},
  {midfield},{spectator_stands,stands},
  {ticket_office, box_office,ticket_booth}}

     functions: {{play,compete},{play,practise},
{recreate,play}}

     attributes: {{architectural_property},
  {covered/uncovered}, {name},
  {lighted/unlighted},{owner_type},
  {sports_type},{user_type}}}

Table 1: Entity_class definition in BNF notation and an example with the definition of
stadium. (x* denotes a pointer to the entity class x)

3 . Comparing Entity Class Representations
Different levels of explicitness and formalization of the ontologies influence the way entity classes
can be compared. Similarity evaluations across ontologies can only be achieved if their
representations of entity classes share some components. A natural way to exploit the full
expressiveness of the entity class representations for a similarity evaluation is to compare each
component in those representations. Thus, two different ontologies that have at least one common
specification component can still be compared.

Our approach to comparing entity classes across ontologies uses three independent
similarity assessments with respect to synonym sets that denote entity classes, distinguishing
features of entity classes, and semantic relations among entity classes. Synonym sets are
themselves groupings of semantically equivalent or very similar words [9]. Thus, our model
considers synonyms as the same entity class and that the similarity between an entity class and
itself is always maximum. The goal of comparing synonym sets in a cross-ontology evaluation is
to exploit the general agreement in the use of words and detects equivalent words that likely refer to
the same entity class. Thus, similar synonym sets can only be used to detect equivalent or
synonym entity classes across ontologies. As such it provides a very basic level of similarity
assessment, which is an inconclusive form of similarity assessment, since words can be quiet
different, while the entity classes can still be semantically similar. An example is clinic and
hospital, which have only a few characters in common and, therefore, their string similarity is very
low. Their semantic similarity, however, is fairly high. Inversely, words in synonym sets can be
the same, whereas the corresponding entity classes are semantically unrelated.

Incorporating semantics into the similarity measure, we can use distinguishing features as
another indicator of how similar entity classes are. Unlike synonym-set similarity with a binary
resolution of similarity (same or different words), a feature similarity handles grades of similarity,
since semantically similar entity classes with quite different names are likely to have some common
features. For example, knowing that stadium and sports_arena are places where people can play a
sport makes these two concepts similar. Diverse feature-based models for semantic similarity [20,
43-45] that have pointed the need for considering context dependence of the relative importance of
distinguishing features and asymmetric characteristics of similarity assessments.
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Our approach treats semantic relations themselves as the subject of comparison. Since the
types of semantic relations are known (e.g., is-a or part-whole relations), the interesting aspect of
comparing semantic relations is whether target entity classes (i.e., entity classes that are the subject
of comparison) are related to the same set of entity classes. If target entity classes are related to the
same set of entity classes, they may be semantically similar. For example, hospital and house are
related to the same superclass building, and they are semantically similar. Thus, comparing
semantic relations becomes a comparison between the semantic neighborhoods of entity classes.

The semantic neighborhood (N) of an entity class ao is the set of entity classes ci
o
 whose distance

d() to the entity class ao is less than or equal to a non negative integer r, called the radius of the
semantic neighborhood (Equation 1).

                                            N a r c i d a c ro
i
o o

i
o( , ) ( , )= { } " £ such that (1)

The distance between two entity classes in the ontology is measured along the shortest
path, which is formed by the smallest number of undirected arcs that connect the entity classes.
These arcs represent subclass-superclass or part-whole relations, and so the shortest path can
represent two sorts of hierarchical relationships. Since distance is a metric function that satisfies the
property of minimality (i.e., the self-distance is equal to zero), the semantic neighborhood of an
entity class also contains this entity class. For example, the immediate semantic neighborhood
(i.e., semantic neighborhood of radius 1) of stadium in a portion of the WordNet ontology
includes the stadium, its superclass structure and, its parts athletic field and sports arena (Figure
1).

Figure 1: Example of the immediate semantic neighborhood of stadium in a portion of the
WordNet Ontology.

There exit arguments against the use of path distance in similarity assessments [7, 21],
which have been addressed by considering weighted indexing schema and variable edge weights
[5, 46]. Although we use path distance to identity the semantic neighborhood of entity classes
within their own ontologies, we do not define the similarity measure between neighborhoods based
on this path distance. Path distance determines the neighborhoods, and the similarity of entity
classes depends on the similarity of the entity classes in their neighborhoods.

In order to integrate the information obtained from the similarity assessments of synonym
sets, distinguishing features, and semantic neighborhoods, we propose a similarity function that is
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defined by the weighted sum of the similarity of each specification component (Equation 2). The
functions Sw, Su, and Sn are the similarity between synonym sets, features, and semantic
neighborhoods between entity classes a of ontology p and b of ontology q, and wl, wu, and wn are
the respective weights of the similarity of each specification component.

              

  

S a b S a b S a b S a bp q
w w

p q
u u

p q
n n

p q
l u n( , ) ( , ) ( , ) ( , ) , ,= × + × + × ³w w w w w wfor and 0 (2)

Weights assigned to Sw, Su, and Sn depend on the characteristics of the ontologies. Only
common specification components can be used in a similarity assessment and their respective
weights add up to 1.0. Similarity of synonym sets can always be a factor of the similarity
assessment, but when polysemous terms occur within an ontology, this similarity is less likely an
indication of semantic similarity among entity classes. For example, one ontology may include
different meanings of the word bank (e.g., a financial institution, a sloping of land, and a
building), whereas another ontology may contain only one meaning of bank (e.g., a financial
institution). Measuring only similarity of synonym sets, we would assign maximum similarity
between each of the meanings of bank in the first ontology and the single meaning of bank in the
second ontology, which is clearly incorrect. Similarity of synonym sets complemented with feature
and semantic-neighborhood similarity, on the other hand, can highlight the similarity between
corresponding senses of the term bank. Through experiments, Section 6 attempts to analyze the
best setting of weights. 

4 . A Matching Approach to Similarity Assessment
Using set theory, Tversky [20] defined a similarity measure in terms of a matching process. This
measure produces a similarity value that is not only the result of the common, but also the result of
the different characteristics between objects, which is in agreement to an information-theoretic
definition of similarity [47]. Unlike traditional models based on semantic distance [48], the
matching model is not forced to satisfy metric properties (i.e., minimality, symmetry, and triangle
inequality). Thus, for example, the similarity between an office building and a building can be
greater than the similarity between a building and an office building (i.e., an asymmetric
evaluation). Although an athletic field is similar to a stadium (because both are sports facilities) and
a stadium is similar to a theater (because both are constructions where people go to attend events),
an athletic field and a theater are not necessarily similar (i.e., a non-transitive evaluation).

A similarity measure based on the normalization of Tversky’s model and the set-theory
functions of intersection (A BÇ ) and difference (A B/ ) is given in Equation 3, where a and b are
entity classes; A and B corresponds to description sets of a and b (i.e., synonym sets, set of
distinguishing features, of set of entity classes in the semantic neighborhood); | | is the cardinality
of a set; and a is a function that defines the relative importance of the non-common characteristics.

                            S a b
A B

A B a b A B a b B A
( , )

| |
| | ( , ) | / | ( ( , )) | / |

=
Ç

Ç + + -a a1
,  for 0£ a£ 1 (3)

The relative importance of the non-common characteristics (shown in the second and third
terms of the denominator on the right hand side of Equation 3) allows the asymmetric evaluation of
semantic similarity. Incorporating such an asymmetric measure is important because if we want to
make similarity evaluations sensible to people judgments, we have to consider cognitive properties
of similarity. In this sense, studies have shown that the perceived similarity from a class to its
superclass is greater than the perceived similarity from the superclass to the class, and that the
superclass is commonly used as base1 of the similarity evaluation [44, 49]. There have given
different explanations for the asymmetric evaluations of similarity. Asymmetry can be explained by

                                                
1 The first term of a comparison is referred to as the target and the second term as the base.
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the relative size and salience of distinctive features sets [20], by potential stimulus biases, such as
density and prototypicality [44, 50], by a natural reference point or landmark for members of a
category [49], and by the direction of maximum informativiness [51].  Common to all these
explanations is the different role that the target and base positions play in a similarity evaluation.
The most salient term, the item with larger bias, the prototypical term, or the term that provides
information to understand the target are always in the base position.

Our work considers that a prototype used as a base of a similarity evaluation is a more
general concept in a hierarchical structure and that the perceived similarity from a class to its
superclass (i.e., a more general concept) is greater than the perceived similarity from this
superclass to the class. Thus, the common, as opposed to the different, component definitions
between a class with respect to its superclass have a larger contribution to the similarity evaluation
than the common components in an inverse direction. A natural approach to comparing the degree
of generalization between entity classes is to determine the distance from these entity classes to the
immediate superclass that subsumes them, that is, their least upper bound in a partially ordered set
[52]. In a cross-ontology evaluation, however, there is no such common superclass between entity
classes. An approximation to obtain the level of generalization of entity classes is to consider that
the two independent ontologies are connected by making each of their roots a direct descendant of
an imaginary and more general entity class anything (Figure 2).

Figure 2: Connecting independent ontologies: (a) partial WorNet ontology and (b) partial
SDTS ontology. (Anything* denotes an imaginary root)

Using this connected ontology, the function a of the matching model can be expressed in
terms of the depth of the entity classes (Equation 4). The function depth() corresponds to the
shortest path from the entity class to the imaginary root. This depth reflects the degree of
granularity upon which the ontology was designed. For example, consider the ontologies in Figure
2. While WordNet’s hierarchy has multiple levels, SDTS defines a large number of concepts that
are unrelated, which yields a shallow hierarchy. When building in WordNet (buildingw) is
compared to building in SDTS (buildings), depth(buildingw) is 5 whereas depth(buildings) is 2,

anything

object

artifact

structure way

entity typeentity

buiilding
complex

stadium building

building stadium building
complex

depth

(a)

(b)



Determining Semantic Similarity Among Entity Classes from Different Ontologies
M. Andrea Rodríguez and Max J. Egenhofer

IEEE Transactions on Knowledge and Data Engineering

such that a (buildingw, buildings) is 0.28. With this definition of a, evaluations from deep to
shallow ontologies usually result in greater values of similarity than evaluations from shallow to
deep ontologies.

                

a( , )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

a b

depth a

depth a depth b
depth a depth b

depth a

depth a depth b
depth a depth b

p q

p

p q
p q

p

p q
p q

=
+

£

-
+

>

ì

í

ï
ï

î

ï
ï 1

(4)

Values of a are greater than 0 and less than or equal to 0.5, which corresponds to the case
when entity classes have the same depth in their respective hierarchies. The non-common
characteristics between entity classes are considered less important than the common characteristics
(a and 1-a are less than 1), because we follow the finding that subjects pay more attention to the
similar than to the different characteristics in a similarity assessment [20, 44].

 Using this matching model, we then define similarity functions for each of the components
of the entity class representation (i.e., we define the elements of the set intersection of Equation 3),
which we have called word matching, feature matching, and semantic-neighborhood matching.

4.1 Word Matching

Word matching (Sw) checks the number of common and different words in the synonym sets that
denote entity classes. For the ontologies in Figure 2, the word matching between building of
WordNet (buildingw) and building complex of SDTS (building_complexs) is 0.58 for a = 0.28
(Equation 5). Likewise, word matching between stadiumw and stadiums results in 1.0, independent
of the value for a.

  

S building building complex
building

building complexl
w s( , _ )

|{ } |
| { } | . | {} | . | { } |

.
.

=
+ +

= =

0 28 0 72

1
1 72

0 58                                                     

(5)

In cases when more than one word exit in the respective synonym sets of entity classes,
word matching finds the most similar terms between synonym sets. For example, if edifice is used
as a synonym for building in the WordNet ontology (Figure 2), then the word matching between
edificew and building_complexs is 0.58, which is the highest value of word matching between

S edifice building complexl
w s( , _ ) and S building building complexl

w s( , _ ).

4.2 Feature Matching

Feature matching (Su) applies a matching process over corresponding types of distinguishing
features such that A and B of Equation 3 are the sets of features of entity classes a and b,
respectively. When both ontologies classify features into parts, functions, and attributes, the
feature matching is given by Equation 6, where Sp, Sf, and Sa are the similarity measures of parts,
functions, and attributes, respectively, and wp, wf, and wa are their corresponding weights.  This
Equation 6, represents a refinement in the level of detail of feature similarity (Sw in Equation 2),
since it establishes a composition of feature matching by subtype of features. By default, the types
of distinguishing features that are present in the specifications of ontologies are considered equally
important (i.e., w w wp f a= = = 0 33. ). In a previous work, we discussed how contextual
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information can be used to determine weights of distinguishing features as a function of the degree
of informativeness or diagnosticity of the features within the domain of an application [42]. When
no classification of distinguishing features is given, a global feature-matching process is
performed, that is, all distinguishing features are considered of the same type.

                        
S a b S a b S a b S a bu

p q
p p

p q
f f

p q
a a

p q

p f a p f a

( , ) ( , ) ( , ) ( , )

, , .

= × + × + ×

³ + =

w w w

w w w w w w        for    and  and +0 1 0
(6)

In this work we have made a lexicographic, rather than semantic, representation of
distinguishing features. Thus, a distinguishing feature is represented by a synonym set, and the
feature matching process applies a string-matching operation over the words in these synonym sets
that refer to the features. String matching over distinguishing features is a strict string matching in
the sense that distinguishing features match only if they are represented by the same word or by
synonym sets that intersect. This process ignores similarity between compound terms, such as
between lane and number of lanes. A major virtue of such strict string matching is a fast
comparison of feature names for large ontologies where the percentage of partial string matching
among feature names is limited.

To see in detail how we assess the similarity of distinguishing features, we present an
extended example. Consider the definitions of stadium in WordNet (stadiumw) and our ad-hoc
ontology WS (stadiumws). While WS identifies parts, functions, and attributes of entity classes,
WordNet has only parts and, therefore, feature matching is confined to the comparison among
parts of entity classes (Table 2).

Stadium (WS) Stadium (WordNet)
  entity_class {
     name: {stadium,bowl,arena}
     description: large often unroofed structure in

  which athletic events are held
     is_a: {construction*}
     part_of: {}
     whole_of: {athletic_field*}
     parts: {{athletic_field,sports_field,playing_field},

  {dressing_room},{foundation},
  {midfield},{spectator_stands,stands},
  {ticket_office, box_office,ticket_booth}}

     functions: {{play,compete},{play,practise},
{recreate,play}}

     attributes: {{architectural_property},
  {covered/uncovered}, {name},
  {lighted/unlighted},{owner_type},
  {sports_type},{user_type}}}

  entity_class {
     name: {stadium,bowl,arena}
     description: large often unroofed structure in which

athletic events are held
     is_a: {construction*}
     part_of: {}
     whole_of: {athletic_field*, sports_arena*}
     parts: {{athletic_field,sports_field,playing_field},

  {foundation},{midfield},{plate},
  {sports_arena,field_house},{stands},
  {structural_elements},
  {standing_room},{tiered_seats}}

     functions: { }
     attributes: {} }

Table 2: Entity_class definition of stadium in WS and WordNet. (x* denotes a pointer to the
entity class x)

Distinguishing features in both ontologies are denoted by synonym sets. We say that two
distinguishing features are equivalent if the intersection of their synonym sets is not empty. Thus,
between stadiumw and stadiumws there are four no-empty synonym sets (i.e., four common
features) (Equations 7).

X = stadiumws.parts Ç stadiumw.parts = {{athletic_field,playing_field,field},{ foundation},
                                                                 {midfield},{ stands}} (7)
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The set difference between features of stadiumw and stadiumws, or vice versa, is defined by
the set of features that belong to stadiumw and not to stadiumws . Thus, there are five parts in
stadiumw that are not in stadiumws and, inversely, there are two parts in stadiumws that are not
stadiumw (Equations 8a-b).

Y = stadiumw.parts - stadiumws.parts = {{plate},{ sports_area,field_hourse }, { standing_room},
                                                                {structural_elements},{ tiered_seats}} (8a)

Z = stadiumws.parts - stadiumw.parts = {{dressing_room},
                                                                {ticket_office,box_office,ticket_booth}} (8b)

The similarity measure between distinguishing features of stadiumw and stadiumws is then
determined by Equation 9 for a equal to 0.45. This equation is equivalent to Equation 3 when A
and B are replaced by the set of parts of stadiumw and stadiumws, respectively.
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4.3 Semantic-Neighborhood Matching

Semantic-neighborhood matching (Sn) compares entity classes in semantic neighborhoods based
on synonym_set or feature matching. Semantic-neighborhood matching (Sn) with radius r between
entity classes ap and bq of ontologies p and q, respectively, is a function of the cardinality (| |) of the
semantic neighborhoods (N) and the approximate cardinality of the set intersection (Çn) between
these semantic neighborhoods (Equation 10).
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The intersection over semantic neighborhoods is approximated by the similarity of entity
classes across neighborhoods (Equation 11), where S() is the semantic similarity of entity classes;
a bi

p
j
q and  are entity classes in the semantic neighborhood of a bp q and ,  respectively; and n and m

are the numbers of entity classes in the corresponding semantic neighborhoods.
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Since S() in Equation 11 is an asymmetric function, the approximate cardinality of the set-
intersection is also asymmetric. The approximate set intersection matches entity classes with
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maximum similarity. This matching excludes the similarity between the two entity classes that are
actually being compared, which would be a redundant evaluation. It allows multiple entity classes
in a semantic neighborhood to match the same entity class in a second semantic neighborhood.
Thus, the approximate cardinality set intersection may reach a value greater than the actual
cardinality of the set of entity classes in the second semantic neighborhood. In such a case, the
model considers the maximum between the approximate cardinality of the set intersection and the
cardinality of the semantic neighborhood. No matching between entity classes of the same role
(i.e., superclass-superclass or subclass-subclass) is enforced, because this type of correspondence
emphasizes similarity among classes with the same superclass while ignoring similarity between
classes and their superclasses.

For example, consider WordNet and SDTS and the evaluation between stadiumw and
stadiums (Figure 2). In a first instance, we consider a radius of 1 and compare how many entity
classes in the immediate neighborhood (i.e., immediate superclasses, subclasses, parts, and
wholes) are common between stadiumw and stadiums (Equations 12a-b). Semantic-neighborhood
matching takes each entity class in N(stadiumw,1) and finds the corresponding most similar entity
class in N(stadiums,1). Based on word and feature matching, the only similar entity classes in the
neighborhoods N(stadiumw,1) and N(stadiums,1) are stadiumw and stadiums entity classes
themselves, which are the original entity classes that are compared. In this case, j  is zero and,
therefore the semantic-neighborhood matching is also equal to zero.

                 N stadium stadium structure athletic field sports arenaw w w w w( , ) { , , _ , _ }1 = (12a)

                  N stadium stadium entity types s s( , ) { , _ }1 = (12b)

Analogous to the notion of shallow and deep equality in object orientation [53, 54],
semantic-neighborhood matching defines shallow and deep matching depending on the radius of
the semantic neighborhood. Shallow matching corresponds to an evaluation that is based on the
similarity of the immediate neighborhood of entity classes (i.e., radius is 1). For semantic
neighborhoods with radius greater than 1, deep matching is the evaluation that is based on the
similarity of the end nodes (i.e., leaves) of the semantic neighborhood. These nodes are the entity
classes located at the end of the path in the network of semantic relations that connect the entity
classes in the semantic neighborhood. A similar notion of shallow and deep could be applied to the
feature matching among parts if we had used a semantic evaluation there instead of a lexicographic
evaluation.

5 . Cross-Ontology Evaluations
There are few studies that have addressed the quality of results of similarity assessments. In cases
of evaluations within a single ontology, these studies analyze the correlation between the
computational similarity and answers of a human-subject testing [5, 21, 55]. For cross-ontology
evaluations, however, no work has attempted to correlate computational similarity with people's
judgments. In the context of cross-ontology evaluations, quality of evaluations has been addressed
on the basis of an intensional or extensional analysis of query expansion to multiple ontologies.
OBSERVER [30] uses intensional as well extensional analysis to define lower and upper bounds
of query expansion based on a manually defined subsumption relation. In an effort to creating an
environment to study algorithms that compute description compatibility, Weinstein and
Birmingham [29] used an automatic generation of ontologies and compared different measures for
determining semantic compatibility, which they define as the probability that an instance of a
recommended answer satisfies a request.  Unfortunately, it is unclear the generality of their results
due to the unrealistic scenarios taking from the automatic generation of ontologies.

We designed new experiments that differ significantly from the previous experiments.
First, we have a model for similarity evaluations across independent ontologies that are not linked
to a top level shared ontology. Second, the model creates automatically, as opposed to manually,
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associations across ontologies. Third, our experiments use already available ontologies (i.e.,
WordNert and SDTS) that differ in their ontology specification as well as level of specificity of
their intended purposes (i.e., general versus specific domain). Forth, we use a human-subject
testing that defines sensible results of the computational model for evaluations among semantically
related entity classes. Finally, we use an intensional approach (i.e., comparing only entity class
definitions rather than instances of classes) in our experiments.

Our application work is focused on the spatial domain so, our experiments employ subsets
of the two readily available resources, WordNet (334 definitions) [9] and SDTS (498 definitions)
[41] that deal with spatial concepts. WordNet is a widely used terminological ontology [4, 56-58]
that organizes concepts in sets of synonyms (synsets) connected by semantic relations. It contains
approximately 118,000 words organized into 90,000 sets of synonyms, which are semantically
interrelated depending on their syntactic category. SDTS was created to provide a common
classification and definitions of spatial features used in processes of spatial data transfer. It
contains a set of entity types (approximately 200 standard terms and 1300 “included” terms) and
their corresponding attributes. We selected all the standard terms of SDTS plus included terms that
match terms in the WordNet ontology.  From WordNet, we selected all entity classes whose names
match terms in SDTS.  Although the selection of concepts based on word matching already
establishes a degree of similarity between concepts, our experiments will show that word matching
is useful, but insufficient, to identify corresponding entity classes across ontologies.

Finally, we create a new ontology WS (257 definitions) from the combination of WordNet
and SDTS (WS) to exploit a more complete definition of entity classes (i.e., semantic relations as
well as distinguishing features). This new ontology has less entity classes than the union of
WordNet and SDTS, since we group some of the intermediate entity classes in the hierarchical
structure derived from WordNet that have just one subclass. To this new WS, SDTS brings the list
of entity classes to be defined, their partial definition via is-a relations, and their attributes.
WordNet complements these definitions with synonym, part-whole, and is-a relations. In addition,
functions in the WS definitions were derived from verbs explicitly used in the natural-language
description of entity classes, augmented by common sense. Since the ontologies used in these
experiments vary in terms of domain (i.e., general vs. specific) and specificity (semantic relations
vs. distinguishing features) (Table 3), the potential conclusions of these experiments can provide a
good indication of the behavior of the similarity model when used with such different kinds of
ontologies.
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Characteristcs SDTS WordNet WS

Words

    Synonymy Ö Ö

    Polysemy Ö Ö Ö

Relations

    Is-a Ö Ö Ö

    Part-of Ö Ö

    Whole-of Ö Ö

Features

    Parts Ö Ö

    Functions Ö

    Attributes Ö Ö

Table 3: Characteristics of the specification components of SDTS, WordNet, and WS.

Two types of experiments were performed that correspond to two different goals: (1)
search for equivalent or most similar entity classes across ontologies and (2) rank similarity
between an entity class in one ontology and a set of entity classes in a second ontology. The first
type of similarity evaluation is useful for ontology integration, since most similar entity classes are
the best candidate for such integration. The second experiment analyzes how well the model
performs for finding similar, and not necessarily the most similar, entity classes across ontologies.
This type of calculation is useful for information retrieval, because it provides a range of possible
answers depending on conceptually similar terms and gives the users the possibility to choose
among them. For example, consider the case of a user who is looking for a stadium in a certain
location. A system can search in one or multiple resources and find that there is not only a stadium,
but also other kinds of sports facilities, such as an athletic field or a tennis court. To do so, the
system should be able to calculate semantic similarity and give the user a set of ranked answers. To
run these experiments, a prototype of the similarity model was implemented in C++.

5.1 Experiment 1: Equivalent or Most Similar Entity Classes

The experiment was done by using different combinations of ontologies in cross-ontology
evaluations (Table 4). These combinations correspond to diverse grades of similarity among entity
classes and components of the entity class representations. They include identical ontologies (1-2),
ontology and sub ontology (3), overlapping ontologies (4), and different ontologies (5).

Case Ontology-Ontology Description

1 WordNet-WordNet Same ontology with is-a and part-whole relations

2 SDTS-SDTS Same ontology with is-a relations and attributes

3 WordNet-WordNet* Subset with same specification components

4 WordNet*-WS Overlapping semantic relations and attributes

5 WordNet*-SDTS* Different ontologies and specification components

Table 4: Cases of cross-ontology evaluations. Symbol * denotes small subsets of the initial
ontology.
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Analogously to standard evaluation measures in information retrieval based on the
relevance of data retrieved [59], we adapt the concepts of recall and precision to evaluate the results
of the model. For this work, recall corresponds to the proportion of similar entity classes that are
detected by the model (Equation 13a), while precision is the proportion of entity classes detected
by the model that are actually similar (Equation 13b), where A is the set of similar entity classes; B
is the set of similar entity classes calculated by the model; and |  | is the counting measure.

                                                     recall
A B

A
=

Ç| |
| |

(13a)

                                               precision
A B

B
=

Ç| |
| |

(13b)

A critical issue for calculating recall and precision is to know what entity classes are in fact
similar, which corresponds to the idea of knowing the relevance of data in information retrieval.
This determination is simplified by the fact that we want to detect synonyms or equivalent entity
classes. For example, building in WordNet (buildingw) is similar to building (buildings) and
building_complex (building_complexs) in SDTS; however, only buildingw-buildings is considered,
because this pair has the highest similarity.

In the first two evaluations (i.e., WordNet-WordNet and SDTS-SDTS), each entity class in
the first ontology has its corresponding entity class in the second ontology, since we compare the
ontologies with themselves and we expect to obtain the highest value of recall and precision (i.e.,
an upper bound for cases with equivalent components of entity class specification). When the
definitions in the first ontology are a superset of the definitions in the second ontology (i.e.,
WordNet-WordNet*), the model should find the corresponding entity classes of the sub-ontology
in the super-ontology. Case 4, WordNet*-WS*, represents the combination of ontologies where
the specification components in the first ontology are a subset of the specification components in
the second ontology. In this case, WordNet has parts and semantic relations, whereas WS has
parts, functions, and attributes as well as semantic relations. From the manual integration of
WordNet and SDTS into WS we specified which entity classes in WordNet correspond to what
entity classes in WS. A more complex situation occurs when specification components have major
differences (i.e., WordNet*-SDTS*). To simplify this task, we consider a particular application
that deal with spatial entity classes present on a university campus map. Thus, forty-eight entity
classes in SDTS where selected, and a manual process found twenty-two corresponding entity
classes between WordNet and SDTS.

The experiment compare all entity classes across ontologies using different weights for
synonym-set, feature, and semantic-neighborhood matching. We show in this paper only those
results that represent lower and upper bounds in terms of recall and precision for each of the
combination of ontologies. Table 5 shows results using a threshold of 75%, that is, entity classes
with lower similarity than 75% were disregarded. Using a lower threshold increases recall, but
decreases precision.
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Weights (%) Recall PrecisionCase

ww wu wn (%) (%)

WordNet-WordNet 50 0 50 100 97

WordNet-WordNet 0 100 0 48 10

SDTS-SDTS 50 0 50 100 100

SDTS-SDTS 0 0 100 100 1

WordNet-WordNet* 50 0 50 99 98

WordNet-WordNet* 0 50 50 28 14

WordNet*-WS 100 0 0 100 78

WordNet*-WS 50 0 50 55 98

WordNet*-WS 0 50 50 0 0

WordNet*-SDTS* 100 0 0 100 42

WordNet*-SDTS* 50 0 50 50 92

WordNet*-SDTS* 0 100 0 0 0

Table 5: Recall and precision of evaluations with threshold equal to 75%.
Symbol * denotes small subsets of the entire ontology.

We obtained obvious results for cases of comparing ontologies with themselves. Recall
based on word matching is 100%, since corresponding entity classes have the same names.
Precision, however, is not necessarily 100% for cases with identical ontologies due to the presence
of polysemous terms. A more general observation indicates that feature matching alone is
insufficient for detecting the most similar entity classes across ontologies. Many entity classes
share common features or have a common superclass from which they inherit common features.
This situation is particularly true for the SDTS ontology, which has a low value for precision.
SDTS has distinguishing features in its entity classes' definitions, but the intrinsically nature of the
general top level entity classes without features and the lack of precision of features to distinguish
entity classes produce bad results. 

Recall and precision decrease drastically for combinations of weights that ignore word
matching. The combination of word and semantic-neighborhood matching obtains, in most cases,
the best evaluations of recall and precision. Complementing word matching with feature matching
tends to increase precision, but decreases recall. As was expected, the worst results are associated
with evaluations over different ontologies (i.e., WordNet*-WS and WordNet*-SDTS*). In these
cases, precision is still over 85%, but recall is considerably lower (50%-55%).  For different
ontologies, introducing feature matching had a negative effect in the performance of the model.

This experiment has shown that the results of the similarity model are highly sensitive to
the components of the entity class representations. As ontologies share more components in their
entity class specifications, the model produces more accurate results. Thus, in an environment with
multiple ontologies, a similarity function should emphasize those components of an entity class
representation that are likely shared by all ontologies. In an ideal scenario where ontology
specifications are complete (i.e., entity class representation contains semantic relations and
distinguishing features) and detailed (i.e., features differentiate entity classes), the similarity model
is a good estimator for similarity. In a realistic scenario with different ontologies, however, the test
found that synonym sets and semantic neighborhood are more stable specification components than
the set of features associated with entity classes. Thus, semantic organization of entity classes is
more similar across ontologies than the distinguishing features used to describe those entity
classes.
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5.2 Experiment 2:Rank of Similarity

This experiment consists in cross-ontology evaluations that are transformed into a rank of
similarity. The evaluations compare an entity class in an ontology (e.g., stadium) with a reduced
set of entity classes defined in a different ontology (e.g., stadium, athletic field, ballpark, tennis
court, commons, building, theater, museum, library, transportation system, house, sport arena).
We selected evaluations between SDTS-WS and WordNet-WS, because they represent different
levels of detail in the entity class representations and because WS has our proposed representation
of entity classes that allows the exploration of each of the components of the evaluation across
ontologies (i.e., word matching, feature matching, and semantic-neighborhood matching). We also
considered the evaluation between WS-WS, since it corresponds to the best scenario with
equivalent definitions and can indicate how well the similarity model works for evaluations within
a single ontology. We chose the entity class stadium as the target of our evaluations, since this
entity classes was found equivalent across ontologies so, similar entity classes to stadium in one
ontology should be similar to stadium in a second ontology. 

Since we wanted to evaluate the quality of the results derived from the computational
model, we use a human-subject testing. We decided to design a new experiment rather than using
previous experiments of similarity assessment within a single ontology [5, 21, 55], because these
previous studies compare quite different entity classes (e.g., car, automobile, food, birth, brother,
noon, so on) without focusing on distinguishing more related entity classes (e.g., stadium, athletic
field, sports arena, park, so on). We asked subjects to rank the similarity among the set of entity
classes based on the definitions in the WS ontology that were given at the beginning of the
experiment. Thirty-seven students (twenty female and seventeen male) of an undergraduate English
class at the University of Maine participated in the experiment. For all subjects, U.S. English is
their mother tongue and their ages range from 18 to 36 years old. Subjects were paid for
participating in the experiment and answered the questions at the same time and in less than 10
minutes without pressure.

The subjects’ answers varied in the number of ranks used to classify entity classes. Most of
them, however, assigned to each entity class a different rank. To compare subjects’ answers, tied
ranks were normalized by the mean of the ranks for which they tie, assuming a number of ranks
equal to the number of entity classes compared [60]. The normalized answers were averaged, then
ranked and normalized, if needed, to obtain the final ranks, which are compared against the
similarity model. We found no significant evidence for differences based on gender, so the result is
given as the total of responses. Subjects found that the most similar entity classes to a stadium in
decreasing order were sports arena, ball park, athletic field, tennis court, theater, museum,
building, commons, library, house, and transportation.

The model evaluations used three types of weight settings: the default (i.e., ww: 0.33; wu:

0.33; wn: 0.33), the best combination of weights that was found in the previous experiment (i.e.,

ww: 0.5; wu: 0; wn: 0.5), and feature-based similarity evaluation (i.e., ww: 0; wu: 100; wn: 0).
Figures 3a-c present the model’s results with the three different settings and the combinations
SDTS-WS, WordNet-WS, and WS-WS, respectively. In these graphs, the ordering of entity
classes in the axis corresponds to the subjects’ responses in decreasing order.
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Figure 3: Evaluations between a stadium and a set of entity classes: (a) SDTS-WS;

(b) WordNet-WS; and (c) WS-WS.
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The correlation between the model’s results and the subjects’ responses was estimated by
the Spearman rank correlation coefficient [61], since this coefficient allows the statistical test based
on ranked answers. The test statistic is also a measure of association such that it is equal to +1
when there is a perfect direct relationship between rankings. Table 6 gives the correlation
coefficient under the presence of ties for each combination of ontologies and each weight setting.

Ontologies Synset-Feature-Neighborhood

ww: 33.3, wu: 33.3, wn: 33.3

Synset-Neighborhood

ww: 50, wn: 50

Feature

wu: 100

SDTS-WS 0.48 -0.34 0.37

WordNet-WS 0.68 -0.34 0.71

WS-WS 0.96 -0.34 0.97

Table 6: Correlation coefficient for similarity ranks in cross-ontology evaluations.

Like the former experiment, this experiment has shown that the performance of the model
depends on how compatible are the ontology specifications. As expected the best results are
between WS and WS whereas the worst results are between SDTS and WS. The best combination
of weights detected in the former experiment gave the worst values of correlation for each of the
ontology combinations. This bad correlation is due to the fact that the model with this combination
of weights detects the most similar entity class and nothing else.

Since the comparison between the model and the subjects’ responses is only possible in
terms of the entity classes that subjects were asked to rank, ranking of the model’s results is done
over the similarity values obtained for this set of entity classes. Therefore, an entity class that was
ranked second within the small set of entity classes could be ranked fifth with respect to the whole
ontology. This situation could mislead the interpretation of the results based on the measures of
recall and precision; however, the most important conclusion of this experiment is that feature
matching is important for detecting similar entity classes within an ontology or the similarity of
semantically related entity classes across ontologies. The assignment of the weights to the
similarity of the specification components cannot only depend on the ontology characteristics, but
also on the goal of the similarity assessment (i.e., ontology integration vs. information retrieval).

6. Conclusions and Future Work

We have presented a model for semantic similarity across different ontologies. The similarity
model provides a systematic way to detect similar entity classes across ontologies based on the
matching process of each of the specification components in the entity class representations (i.e.,
synonym sets, distinguishing features, and semantic neighborhoods). The similarity model is
useful as a first step in an ontology integration, since it may detect most similar entity classes
across ontologies. These similar entity classes could be then analyzed with user input to derive
semantic relations, such as is-a relation or synonym relations, to create an integrated of ontology.

Experiments using the similarity model with different ontologies indicated that different
components of entity class representations have different effects on the similarity evaluations.
Synonym sets and semantic neighborhoods are good components to use for detecting equivalent or
most similar entity classes across ontologies. Distinguishing features are suitable for detecting
entity classes that are somewhat similar, that is, entity classes that are not synonyms and that are
located far apart in the hierarchical structure (e.g., stadium and athletic field in the WordNet
ontology).

This work has concentrated on entity classes and has compared distinguishing features in
terms of a strict string matching between synonym sets that refer to those features. The semantic
similarity among features, however, has been left for future work. For example, parts are also
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entity classes that could be semantically compared in a recursive process. Verbs could be related by
the semantic relation entailment [33] (e.g., buy and pay) or could be formally specified such that
they could be semantically compared. Likewise, the specification of attributes in terms of their
domains (i.e., the set of possible values) could lead to exhaustive similarity evaluations among
entity classes.
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