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This paper proposes a methodology for using mobile telephone-based sensor data
for detecting spatial and temporal differences in everyday activities in cities.
Mobile telephone-based sensor data has great applicability in developing urban
monitoring tools and smart city solutions. The paper outlines methods for delineat-
ing indicator points of temporal events referenced as ‘midnight’, ‘morning start’,
‘midday’, and ‘duration of day’, which represent the mobile telephone usage of
residents (what we call social time) rather than solar or standard time. Density
maps by time quartiles were also utilized to test the versatility of this methodology
and to analyze the spatial differences in cities. The methodology was tested with
data from cities of Harbin (China), Paris (France), and Tallinn (Estonia). Results
show that the developed methods have potential for measuring the distribution of
temporal activities in cities and monitoring urban changes with georeferenced
mobile phone data.

Keywords: time use; smart city; social time; urban; mobile positioning; geography;
spatial mobility

1. Introduction

Cities have always been dynamic locales and current policies associated with smart city
technologies have introduced demand for monitoring tools that can quickly detect changes
and identify urban rhythms (Griffiths et al. 2010, Batty et al. 2012). For example, such
information is useful for better timing transportation services and ultimately developing
intelligent transportation systems; for managing the operating hours for public and private
services; and for developing dynamic taxation systems based on temporally variable
demand, such as congestion pricing for roads or parking. There are a growing number
of smart city solutions that use sensor data from various social systems (Hancke et al.
2013), which contrast with more traditional, static data – population registers, land-use
data, questionnaires – hitherto used in urban studies. Recent approaches to city govern-
ance based on smart city solutions have sought more dynamic indicators and data sources
to monitor daily life and short-term processes (Lee and Lee 2014). Such datasets are
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derived from transportation and energy networks, pedestrian sensors, communication
networks, and many other sources.

Mobile phone-based data are particularly promising sources for monitoring dynamic
processes in cities as penetration rates for phones are high, and by design they are nearly
always at hand. Several use cases have demonstrated the usefulness of using mobile data
for detecting or measuring changes in urban space, particularly for monitoring purposes
that rely on fast data collection (Ahas et al. 2007, Calabrese et al. 2011, Csáji et al. 2013,
Silm and Ahas 2014, Yuan and Raubal 2014). The most common use for mobile data is
mapping de facto distributions of population groups, spatial mobility, and social networks
(Lambiotte et al. 2008, Sobolevsky et al. 2013), as well as monitoring temporal distribu-
tion of activities.

The objective of this article is to develop a methodology that uses call detail record
(CDR) data of mobile network operators (MNOs) to detect spatial and temporal differ-
ences in everyday activities, or what we refer to as social time to distinguish it from
standard or solar time. Our research questions are:

(1) How can we define and calculate meaningful temporal indicators within social
time using CDR data?

(2) How can we measure and visualize the spatial differences of these indicators of
social time?

(3) How do these social time indicators vary between Chinese, Estonian, and French
cities?

Pursuant to the concept of the studies of cyclic processes, we define four social time
indicators based on diurnal call activity curves and analyze the spatial differences of
these indicators on the basis of four temporal quartiles to better understand the
temporal dimension of urban life. Note that the defined indicators arise from various
descriptive statistics and critical points of call activity curves (e.g., global/local max-
imum, derivatives, and quantiles). Because the shape of the curves may vary for
different cities/countries, here, we do not attempt to cover all potential indicators,
instead, we aim to demonstrate the effectiveness of employing the ‘social time’
concept toward constructing a more flexible scheduling system by focusing on more
generalizable indicators among different curves. The three developed punctual indica-
tors (morning, midday, midnight) and one durative indicator (length of day) are
consistent with the concept of ‘parts of the day’ in common senses, which is
influenced by the orbital motion of the Earth around the Sun (Clemence 1959).
Using CDR data from Tallinn (Estonia), Harbin City (China), and Paris (France), we
demonstrate how these metrics enable us to compare differences in time use in urban
space within and between cities. A key consideration in the development of such
metrics from CDR data is the selection of the appropriate level of geographical and
temporal aggregation.

2. The conceptual framework

The standardization of time and time measurement of the nineteenth century was driven
by the needs of industrialization and transportation networks rather than local activities
or practices (Pred 1981). This history of centralizing time inspired this research to
consider how we might ‘socialize time’ to better reflect the everyday and localized
practices of society. In this effort, we build upon earlier work, such as time geography,
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which analyses spatial and temporal processes via an integrated framework for measur-
ing events and activities in geographical space and is characterized via capability
constraints, coupling constraints, and authority constraints (Hägerstrand 1970). We
also draw upon the idea of ‘social time’ as defined by Sorokin and Merton (1937),
which focuses on ‘the rhythm and pulse of society’ and stands in contrast to other
conceptualizations of social time as the moments used for socializing or social interac-
tion (Cipriani 2013). Thus, this paper defines social time as the particular structuring of
the temporal dimension of society built via the aggregation of human activities and
social behaviors that can be captured in various data collection systems. A key part of
this conceptualization is that social time varies across scale and space and is therefore
especially useful to highlight unique and localized patterns of behaviors. Conceptually,
we recognize that social time varies across and within cities, e.g., Madrid’s practice of
siestas differs from Northern European cities and most cities have early morning
markets and nightlife districts, and with CDR data it is now possible to empirically
measure and visualize these differences.

Measurement of the time usage of cities can be thought of as ‘demand’ emerging from
the behavior of people (activities of individuals) and ‘supply’ derived from the function-
ing of institutions (e.g., opening times or timetables). Both sides are co-productive of time
usage with ‘demand’ influencing the times and places of the availability of services and
the ‘supply’ also guiding the consumption habits and spatiotemporal behavior of the
society (Bromley et al. 2003, Kwan and Neutens 2014). Thus, measurement of the time
usage of urban space might be approached from the side of demand or supply as long as
its counterpart is not ignored.

When the temporal rhythm of the human activities is measured, it is usually done via
time use surveys (time observatory) or travel surveys. Such surveys are often only
related to certain activities and to a limited time period. In contrast, several information
and communication technologies-based big data sources create a possibility for
monitoring the temporal pattern of a wide range of human activities during longer
periods of time (Järv et al. 2014). One of the most useful sources for this approach
are MNO’s log files: CDR and data detail record (DDR) (Ahas et al 2008, Calabrese
et al. 2011, Yuan et al. 2012). These are used extensively in research, not only because
they capture a record of social interaction or activity but also because they usually
record a large amount of people in a wide territory. It is difficult to capture an accurate
picture of the time usage for a single person from CDR and DDR data – mobile phones
are generally used irregularly – resulting in very few observations or calls for certain
individuals. At a city level, however, CDR data can be temporally and spatially
aggregated and thus provide a good overview of the human activities at the societal
level.

In this way, aggregated CDR data can be used to derive the diurnal call activity curves
of mobile network cells. At the macro-temporal level, their diurnal curves are relatively
similar for most of human activity indicators: people are more active in the daytime and
less active at night (Roenneberg et al. 2003). Geographically, however, divergent patterns
emerged. For example, suburban ‘sleeping areas’ and jobs and business centers have
temporally inverse patterns, with the latter containing most activities during the working
hours and the former experiencing activities primarily outside of the work day (Meijers
2007). Services, recreation areas, and scenes for cultural or sport events can be distin-
guished in the same way, albeit with different temporal concentrations of activity. Thus,
comparison of time usage curves enables us to compare the social times of areas and
people.

International Journal of Geographical Information Science 2019
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Figure 1 presents ‘a classic’ CDR data-based aggregated time usage curve for the
city of Tallinn, Estonia, in which the number of call activities of the mobile phone users
in the city are aggregated in 10-min periods, 144 periods per day. Diurnal distribution of
call activities can be also standardized. Figure 1 also provides an example of the three
fixed time periods – night minimum (line 1), morning (line 2), and midday (line 3), as
well as the duration of the active day (the shaded area labeled ‘a’) that we use in this
analysis.

Such ‘diurnal call activity curves’ based on CDR data do, however, have limita-
tions (Yuan and Raubal 2012). Comparing graphs visually highlights the differences
between the time usage of certain areas or groups, but statistical testing is complicated
as it is challenging to find reasonable dependent values from these diurnal call activity
curves.

The literature on temporal phenomena focuses on linear and cyclic processes
(Feldman and Hornik 1981). The linear processes include, above all, long-term varia-
tions in demography, land-use change, migration, etc. Cyclic processes are mainly
short-term, usually with a 24-hour, weekly, or seasonal cycle and include such things
as commuting, tourism, seasonal employment, and agriculture in the case of climate
zones, etc. (Panda et al. 2002, Roenneberg et al. 2003, Silm and Ahas 2010). Cyclic
processes are rhythmic, i.e., the events within the phenomena occur with a certain
regularity with periods and amplitudes, albeit with range of variance. The rhythm of
the processes is thus determined by the repetition of certain events that can be fixed
and measured in time, such as the practice within climatology to fix the start of winter
to the date of the formation of permanent snow cover (Jaagus and Ahas 2000). The
duration of events can also be measured, such as the definition of winter measured by
the period of time with permanent snow cover. Building upon this standard practice,
one can also study the rhythmic processes of time usage within and between cities
through the identification of measureable events of urban life. The goal is to both
confirm generalized patterns shared across urban areas and identify how the social
time geographies of each city differ.

Figure 1. Diurnal call activity curve which presents the amount of call activities in every10-
minute time period (all together 144 periods per 24 h) in Tallinn, Estonia. Presented aggregated
data for all network cells in city: 1 – night minimum; 2 – morning, 3 – midday, a – duration of
day.
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Cities have different functionalities, which are temporally used in very diverse man-
ners. Employing temporal urban activities as an indicator of vitality has long been deemed
important in the works discussing the urban monofunctionality (Filion 2000).
Monofunctional areas are attractive to people in a short period during a day and stand
in contrast to multifunctional areas, which are active for longer stretches of time. The
so-called’ 24-hour city’ stresses the importance of ‘mix use’ and night-time entertainment
as a tactic to extend the usage time of a city and has become a key concept for the
temporal dimension of a city (Bianchini 1995). Thus, it comes as no surprise that the
24-hour city concept has been utilized in urban planning and development strategies to
help invigorate the economy of a city (Lovatt and O'Connor 1995). In addition to the
circadian cycle, other important urban rhythms include weekly (7-day) and seasonal
(12-month) cycles.

In travel behavior research, activities are divided into home, work, and leisure,
with each activity characterized by a specific temporal and spatial pattern correlating
with land use (Forsyth et al. 2007). Cities not only contain monofunctional areas such
as suburban ‘sleeping’ districts and industrial ‘work’ areas but also include many
multifunctional areas as well with various activities entwined in the same buildings
and/or districts. For example, some people may work at home while conversely many
household activities are taken care of at work during the day. In short, urban
environments are crossed by various trends in the use of space and time (Handy
et al. 2005) or, in the parlance of this research, cities possess unique and localized
geographies of social time.

3. Data and methods

3.1. Data

To test our methodology for mapping differences in social time in the case study cities –
Harbin in China, Paris in France, Tallinn in Estonia – we used CDR data provided by
the major mobile operators in Estonia (EMT), China (China Mobile) and France
(Orange). Data for the Chinese cities cover 9 days between 21 and 29 July 2007,
while French and Estonian datasets are drawn from 22 to 29 September 2007 to avoid
potential behavior inconsistency during the European summer vacation period. Sunrise
in Harbin City was at 4:03 am on 21 July 2007; in Tallinn 07:04 am and in Paris
07:36 am on 22 September 2007. We studied working days (Monday, Tuesday,
Wednesday, Thursday, Friday), weekend days are different but we do not compare
them here. The Estonian data only includes outgoing call activities (call, text message,
data communication, services) and averages 5.6 activities per person per day. Data from
China and France includes all incoming and outgoing call activities with an average of
5.5 activities per person per day in China and 8.13 in France. In total, the database
includes 2.4 million users in Harbin province in China, 1.7 million in France, and 0.3
million in Estonia.

Although it is beyond the scope of this paper to provide a definitive explanation, it is
clear that social time of these cities is influenced by culture, traditions, the political
system, and the urban context. For instance, the three cities in this study differ to lesser
or greater extents along these dimensions, all of which may contribute to the observed
time usage. Harbin City is an important industrial area of the rapidly developing China.
It has 5.3 million residents (10 million if the surrounding suburbs are included) with
most living in high-rise apartment buildings serviced by centrally planned urban
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structures and transportation. Paris is a classic western European city with 2.3 million
residents in the core city and more than 10 million in the entire urban region and is
deeply embedded within the time usage traditions of French culture and society.
Employment reflects the so-called postmodern shift, as the number of services, educa-
tion, and creative job positions – associated with more flexible temporality – are
increasing relative to industrial employment. Tallinn, Estonia, has 400,000 people living
in the core with another 200,000 in the surrounding hinterland and is the center of a
rapidly developing Eastern European country. Tallinn is still transitioning from a Soviet
centrally planned society to a market-based economy, with accompanying changes to
employment structure and daily activities as the traditions and rules in the society are
being reinvented. This variety of urban contexts helps to ensure that our methodology
for analyzing social time is relevant across a wide range of spatiotemporal patterns and
differences.

3.2. Data aggregation

In order to establish a uniform time unit for comparison, we aggregated the data of call
activities into 10-minute periods from 00:00 to 24:00. We normalized the results relative
to the average distribution of call activity in a day using a metric from zero to one with
zero indicating that no calls were made and one indicating that the maximum amount of
activity took place. The resulting dataset provides a series of 144 points for call activity
within each city with a 10 minute temporal resolution (Figure 1). In order to stabilize the
noise and extract indicators, we also smoothed the curves based on local polynomial
regression fitting (LOESS), which utilizes the local subset points to create a fitted value
(smoothing parameters: LOESS (count ~ time, span = 1/3)). The major advantage of
LOESS is that it does not require a specific function to fit a model to the entire dataset;
therefore, it is ideal for modeling complex phenomena where no theoretical models have
been established (Ripley 2004). For this study, it is challenging to fit a specific model
into the varying call activity curves; hence, LOESS is selected as a smoothing
technique.

3.3. Key metrics of time

In order to study the time use differences (or social time) in cities, we use four indicators:
(1) night minimum; (2) start of the morning; (3) midday; and (4) duration of active day
(Figure 1, B). Note, all times referenced in this article are local standard time for the
specific city mentioned.

The ‘night minimum’ indicator is defined as the moment with the lowest number of
calls during the 24-hour daily cycle, and represents the time point when a city is least
active. In case there is more than a 10 minute period with the minimum time, the average
time of these periods is calculated. (Figure 1, 1)

The ‘morning’ indicator corresponds to the time when call activity is increasing the
fastest during the period from 3:00 to 12:00. This is the point at which the first derivative
(rate of change) of the data series reaches its maximum. (Figure 1, B,2)

The ‘midday’ indicator is calculated as the average time of all call activities. It is
found by summarizing all values of 144 ten-minute time units of the diurnal cycle and
dividing by 144 (Equation (1)). This average time indicates the ‘mean’ of temporal
distribution of activities in a city and is easy to determine. (Figure 1, B,3)

2022 R. Ahas et al.
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tx ¼
P

ca

N
(1)

where: tx ¼ middayP
ca = sum of calling activities time

N = Number of calling activities

The ‘duration of active day’ indicator is calculated as the period in which 80% of all
call activities are made. Starting at midnight, the active day begins when 10% of activity
has occurred and ends when 90% of activity has occurred. For example, if 10% of
cumulative call activities is reached at 8:20 am and 90% at 6:33 pm, the duration of
active day is 10:13. (Figure 1, a)

3.4. Spatial analyses

Analyzing the spatial differences of social time in cities is most easily achieved by
mapping the timing variables outlined above. Such an interpolated map for the midday
marker of social time in Tallinn is shown in Figure 2; however, this relatively simple
approach can be characterized as ‘fuzzy’ and does not provide a good overview of the
distribution of social time in a city. The lack of regularities in Figure 2 is caused by the
high density and diversity of mobile network cells. There are regular antennae located in
the urban space, there are antennae located in important buildings (such as shopping
centers, rail stations, etc.), and there are antennae that are located in the vicinity of larger
buildings, markets, and transportation centers. This means that the coverage of network
cells is not universal or uniform, as the distribution of the cells matches the functional
diversity of the urban space and buildings, and thus the visualization in Figure 2
provides poor guidance in understanding the spatial patterns of temporal activities.

Figure 2. The midday period on weekends expressed in standard time in mobile network cells in
Tallinn. Spatially interpolated by the inverse distance weighting (IDW) method.

International Journal of Geographical Information Science 2023
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Thus, after several tests, we addressed the issues shown in Figure 2 by mapping
the beginning times for our social time indicators through the use of quartiles. This
method is suitable for studying the temporal dynamics of the urban space as we can
compare the course of a certain temporal event – for example, midday – by tracking
the distribution of network cells within each quartile. The maps are composed from
network cells with first quartile = very early; second quartile = early; third quar-
tile = late; fourth quartile = very late beginning time. This level of temporal aggrega-
tion reduces the effect of varying distribution of antennae in space. We presume that
activities of more similar temporal distribution in a city are represented in the
quartiles.

To visualize the geographical differences in social time in urban space, we first
determined the geographical center of the city by calculating the geometrical center of
the mobile network antennae used in the study. From this geographical center, we mapped
the ellipses for the network cells associated with each quartile in meters. Even though the
geometrical center of the mobile network antennae does not precisely match the center of
the city, it is clear for finding a central point in the system and readily shows spatial
differences between quartiles. Moreover, many modern urban geographical approaches
recognize the difficulty in determining the center of a city, particularly in the case of
polycentric urban areas, and city centers have many definitions and methods (Meijers
2007).

4. Analysis

4.1. Duration of day

Comparison of the duration of days of the cities shows that the active day is the shortest in
Paris, (10:25) and longest in Harbin (11:41) (Table 1). The values of the standard
deviations and medians in Table 2 show that variation between mobile network cells
within the cities is not very high. However, the large amplitude of the minimum and
maximum values (minimum in Paris 3 h, maximum in Tallinn 22:40) also shows that the

Table 1. Descriptive statistics for day length for all network cells with the cities.

City Mean Median Min Max SD

HARBIN 11:41 11:50 07:10 14:00 00:52
PARIS 10:25 10:40 03:00 18:30 01:07
TALLINN 10:30 10:40 07:00 22:40 01:31

Table 2. Statistics describing arrival of midnight.

City Mean SD

HAR 03:24 01:05
PAR 05:16 00:48
TAL 05:11 00:48

2024 R. Ahas et al.
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network cells of certain locations or buildings may be in limited use temporally or
spatially.

This difference between day lengths of network cells in the first and fourth
quartiles also varies between cities: the value for Harbin is 2:15, Paris 2:21, and
Tallinn 3:17. With the largest difference in day length between quartiles, spatial
differences in duration of day are the greatest in Tallinn: the active day is the shortest
(quartiles 1, 2, 3) in a narrow area in the city center on a working day; while network
cells associated with the longest day (quartile 4) are dispersed over Tallinn
(Figure 3).

In Harbin City (Figure 4), the geographic differences of the duration of the active day
quartiles are much smaller. The city center differentiates with the shortest day (quartiles 1,

Figure 3. Relative density and standard deviational ellipse (1 SD) of mobile antennas by quartiles
of day length in Tallinn.

International Journal of Geographical Information Science 2025
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2, 3) and the antennae with the longest day (quartile 4) are more diffused over the city. In
Paris (Figure 5), the differences in the geographical distribution of the duration of active
day quartiles are greater. On a working day, the shorter day (quartile 1, 2) is focused in the
center of the city, the antennae with a longer day are, however, diffused all over the city
(quartiles 3, 4).

This difference between cities is illustrated in Figure 6, which presents the duration of
the active day by quartiles. The shaded area around the lines marks the general variation
in day lengths within the quartiles. Quartile 1 (very early) varies most. These temporal
differences between quartiles also have geographies, such as a narrow concentration in the
center of Tallinn as shown in Figure 3.

Figure 4. Relative density and standard deviational ellipse (1 SD) of mobile antennas by quartiles
of day length in Harbin.

2026 R. Ahas et al.
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4.2. Night minimum

The night minimum of phone usage shows the least active moment of a city. In Harbin,
the minimum of the city arrives earliest, at 3:24 am on working days. In Paris and Tallinn,
the night minimum only arrives in early morning, i.e., at 5:16 am in Paris and 5:11 am in
Tallinn (Table 2). Variation of the night minimum within the cities is moderate at around
1 h SD.

The difference between the averages for network cells in the first and fourth quartiles
in Harbin is 2:34, in Paris 1:46, and in Tallinn 1:50. In Harbin, the beginning of the first
quartile of the night minimum is diffused over the city, the second quartile is more
concentrated in the city center, the third and fourth quartiles, however, are concentrated
in a very narrow city center area (Figure 7).

Figure 5. Relative density and standard deviational ellipse (1 SD) of mobile antennas by quartiles
of day length in Paris.
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In Paris, the geographical distribution of midnight is quite similar to Harbin: the
arrival of the first quartile is diffused over the city and the fourth quartile is concentrated
in the city center. The geography of the arrival of the night minimum in Tallinn follows a
pattern similar to that of Harbin and Paris. Graphic presentation (Figure 8) of variation of
the quartiles shows that in Harbin, the variation of the night minimum with the fourth
quartile network cells is very large.

4.3. The morning

The morning starts with a rapid rise of activities in all cities. In Harbin, the morning starts at
5:00 am, in Paris at 6:20 am, in Tallinn at 5:57 am, and there are remarkable differences in
this indicator of social time between cities and quartiles within cities (Figure 9, Table 3).

For example, the geography of the start of the morning in Paris varies with network
cells within the first quartile dispersed over the city (Figure 10), the antennae of the
second quartile are concentrated north from the city Centre, the locations of a later start of
the morning, i.e., the third and fourth quartiles, are in the areas north and northeast from
the city center.

The morning in Harbin also starts with great spatial variability; the first quartile is
diffused over the city, the second northeast from the city center, the third west from the
city center, and the later start of the morning (fourth quartile) is concentrated in the north
and northeast from the center. The start of the morning in Tallinn is distributed over the
city in the very early and early quartiles and concentrated in a narrow area in the city
center in the late and very late quartiles.

4.4. The midday

At midday, the average time of all call activities – is quite stable in all cities (Figure 11).
Harbin is the city with the earliest midday (at 2:03 pm on a working day), followed by
Tallinn (at 2:33 pm), with the latest midday in Paris (at 3:38 pm) (Table 4). The
differences between the quartiles of the arrival of midday are greatest in Tallinn. In

Figure 6. Distribution of day length in the studied cities by quartiles.
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Harbin, the same indicator remains within 1 h on both types of day and in Paris within
1.5 h on both types of day. Intra-quartile variation of midday is the greatest in the first
quartile in Paris and Tallinn (Figure 11).

Geographically, arrival of midday in Harbin is distributed quite evenly over the city
with concentration in the city center. Only in the case of the very late (fourth) quartile
are the antennae primarily concentrated in the city center. In Paris, the distribution of
midday quartiles is more dynamic. The first and second quartiles of a working day are
concentrated in the north of the city center; the third and fourth are more dispersed east
from the city center. In Tallinn, the first, second, and third quartiles on a working day
are quite narrowly concentrated in the city center, the fourth is dispersed over the city
(Figure 12).

Figure 7. Relative density and standard deviational ellipse (1 SD) of mobile antennas by quartiles
of night minimum in Harbin.
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Figure 8. Distribution of the night minimum in the studied cities by quartiles.

Figure 9. Distribution of the start of the morning in the studied cities by quartiles.

Table 3. Statistics describing morning.

City Mean SD

HAR 05:00 00:43
PAR 06:20 01:17
TAL 05:57 00:46
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5. Discussion

5.1. Evaluating the indicators

Mobile phone data is not a novel source for time use studies, although earlier researchers
have mainly used these data for studies examining diurnal or weekly time use curves. The
methodology developed in this paper takes a different approach, and measures the timing
(particularly the start times) and duration of certain events, replicating the insights offered
by climatology and seasonality studies (Jaagus and Ahas 2000) in an effort to construct
localized metrics of social time. In developing the methodology behind identifying useful
indicators within the diurnal cycle, we explored a range of timing metrics. Based on these
tests, we selected three indicators of timing (night minimum, morning, midday) and one
period (duration of day) as the best-suited ones for studying social time and, by extension,

Figure 10. Relative density and standard deviational ellipse (1 SD) of mobile antennas by quartiles
of start of the morning in Paris.
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the temporal and spatiotemporal differences between and within cities. All of these
metrics based on CDR data provide replicable means for measuring temporal variation
in the activities in a city.

In order to test our methodology, we used CDR data from Harbin, Paris, and Tallinn to
analyze differences within and between cities. The analysis showed that the most sig-
nificant problem is the shortage of data in certain network cells. Smaller network cells and
sparser population mean that there are simply too few call activities and it is not possible
to calculate the indicators adequately at this scale. While this was not a particularly big
problem in Harbin and Paris (both with sizeable populations), it emerged as a significant
issue within the much more sparsely populated Tallinn. This was especially a problem in
the determination of night minimum, as some sparsely populated areas could be without
calls during multiple 10 minute time periods during the daylight hours of the day. This
situation can be addressed by aggregating data in network cells, extending the time period
used or, as we did in this case, setting a temporal frame from 01:00 to 08:00 for the
determination of midnight.

In addition, there are specific issues associated with each indicator of social time.
Another concern with the night minimum is that even with the temporal frame, the period
with a minimal number of calls may be long or spread across several minima. In these
cases, the central point in time for multiple minimum periods is calculated. An issue for
the morning phase is the occurrence of periods with a similar curve in other parts of the
day. For example, in Paris and Harbin, similar derivate values were detected in some cases
during fast-growing call activity arising right after the lunch break. This again was

Figure 11. Distribution of midday in the studied cities by quartiles.

Table 4. Statistics describing midday.

City Mean SD

HAR 14:03 00:25
PAR 15:38 00:40
TAL 14:33 00:50
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addressed by defining a time frame for the start of morning: in this case, 3:00 to 12:00.
The calculation of time of the midday and duration of the active day was methodologi-
cally easiest and thus serves as a particularly good metric for comparison of inter- and
intracity activities. But the indication and interpretation of these indicators would benefit
from more theoretical explanation as this line of research moves forward.

5.2. Spatial analyses

Spatial analysis of the four indicators revealed that due to the very high variability in
values of individual network cells, it is simply not possible to discover timing regularities
in cities with a simple mapping (see Figure 2). The social time in urban space revealed by

Figure 12. Relative density and standard deviational ellipse (1 SD) of mobile antennas by quartiles
of midday in Tallinn.
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these metrics can be very spotty, there may be a ‘very late’ antenna in the vicinity of a
‘very early’ antenna, and the values are too different for discovering any spatial regularity.
To solve this problem, we developed a methodology for dividing time events into four
quartiles, which helps smooth the visualization shown in Figure 3. However, even plotting
such quartile data on a single map – such as the one in Figure 13 – results in a
representation that is difficult for interpretation and analysis of the spatial differences in
temporal activity.

We also tested mapping with terciles and quintiles, but with the current data the most
effective division was quartiles. The cartographic analysis of the quartiles (very early,
early, late, and very late) of beginning times of events provides a good overview of the
areas with early and late timings in the city and shows that the timing of human activities
in the city has different temporal layers. Such deconstruction of data layers into quartiles
can be a useful tool for various spatial analyses. This method also has limitations, as we
can only see general patterns of distribution of social time and may miss interesting
locations and events in the city. But this is a problem of selecting the appropriate method
for achieving specific research objectives.

5.3. Differences between cities

The results of our analysis highlight the substantial differences in the social times of the
three case study cities. The duration and timing of the CDR-derived markers vary across
different cities and geographical areas in cities. The three temporal indicators studied
(midnight, morning, midday) show that the day in Harbin arrives and ends later and is
therefore longer than in Europe. Some of these differences can certainly be tied to
geographical location, seasonality, and issues with standard time. However, it is also
reasonable to suggest that cultural differences (including economic, governance, tradi-
tions, etc.) also contribute to variation in time use. The earlier start and longer days in
Harbin are consistent with our understandings of industrialization and fast-growing
economies, while the later starts and short days correspond to the postindustrial societies,

Figure 13. Day length in Tallinn, values of four quartiles of Figure 3 presented on one map.
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such as France and Estonia. Thus, the indicators developed in this study provide an
intriguing first step for future research on the causal relationships between social time and
spatial patterns of activity, land use, and other factors. Another important factor likely
influencing the results of this study includes the size and density of the urban areas. In
Harbin, the study area covers the whole city, including high-rise apartment buildings and
densely populated suburbs. The area included in the study in Tallinn covers the city center
and the suburbs of lower buildings and sparser population surrounding the city. In
contrast, the study area in Paris only covers the core area of the city. In Paris, the people
leave the area after work and the day seems shorter to us and the timing different. Such
differences highlight some of the challenges of using CDR data from multiple countries
and demonstrate the aspects that must be taken into account when comparing different
data and places.

5.4. Time use differences within cities

Our analysis shows that social time differences between the city center and the suburbs
are specific to each city. The very early (first) quartile and the very late (fourth) quartile
have opposite geographic distributions in city centers and suburbs. Functional difference
between suburban–urban structures and activities is a well-studied aspect of urban life,
and our results confirm that methods based on mobile phone data are useful for
detecting and measuring those differences. In addition to the quartile maps (Figures 3,
6 and 10), it is also interesting to present the densities of activities graphically as the
distance from the central point of the city. Figure 14 shows the geographical distribu-
tions of morning start in the studied cities. The peak for the earliest (first) quartile of the
start of morning is the furthest away from the city center in Harbin, and the following
quartiles are each closer to the city center with relatively different values for the
kurtosis, skewness, and shape of the distributions. In Paris and Tallinn, the distribution
of social time in space is similar, although the spatial differences in Paris are simply
smaller (a product of the size of the study area) and, in Tallinn, the latest quartile is
much more highly concentrated in the city center. Presumably, this means earlier waking
of the suburban sleeping areas further away from the center and later arrival of people to
the workplaces in the city center. Of course, in interpreting this result, we must
remember that the city center is defined as the geometric center of the mobile network
antennae.

5.5. Sensor data and urban monitoring systems

The final goal of this paper is to prepare CDR-based indicators and methodologies for
developing urban sensor systems and monitoring tools. One crucial issue in developing
sensor systems for urban environments is related to communication and data manage-
ment standards (Hancke et al. 2013). A big advantage of the Digital Mobile Network
Operator data used in this study is that it has no problems with standards of commu-
nication, making data collection and management technically feasible across a range of
settings. This key strength of mobile data makes it attractive for developing smart city
solutions, although problems related to data access and concerns related to privacy
remain (Positium 2014). A peculiarity of CDR data is that it provides a robust yet
limited metric of activity; we know only location points of individuals at the moment of
communication (place, time, ID). But this limitation is compensated by other features of
mobile data: (1) the number of users and observation period are high; (2) data is digital
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and easy to process; and (3) the data has real-time applicability. These three aspects
make mobile data an especially interesting source for sensor technologies. This robust-
ness of mobile data can be further enriched with methods such as those developed in
this study. Timing indicators derived from raw data can help to detect important spatial
and temporal processes in city.

Mobile data can be used as sensor input in different levels of smart systems.
‘Robust’ location data is an important part of ‘Basic Smart’ systems and is used for
sensing, monitoring, acting, and controlling functions (Debnath et al. 2014). This
‘robust location’ information of individuals provides a valuable base model to link to
different features from mobile devices or persons carrying phones. The timing indicators
developed in this paper can be used as part of ‘Advanced Smart’ systems of smart cities
– for predicting, healing, and preventing functions (Debnath et al. 2014). For example,
the social time indicators developed here can be applied to the temporal adjustment of
origin–destination matrices in intelligent transportation systems and for predicting
transportation demand for separate weekdays or seasons. Indicator of ‘night minimum’
can be used for measuring the actual start time (and end) of day, which can be a very
different time from standard 00:00 midnight. Such ‘functional midnight’ can be used for
developing behavioral taxation systems, or intelligent transportation, parking, street
cleaning systems, etc. Our experience demonstrates that we can discover much higher
variability of transportation parameters from analyses of long-term mobile phone time
series than using short-term questionnaires or transportation census (Järv et al. 2014).
Ubiquitous mobile data is detecting many more activities than we can grasp with
traditional data collection methods.

Figure 14. Distribution of the start of morning, based on quartiles, with the distance from the
central point of the city.

2036 R. Ahas et al.

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 1
0:

33
 2

7 
O

ct
ob

er
 2

01
5 



Our methodology for quartile-based spatial deconstruction of time layers could also be
applied to monitoring urban changes as part of ‘Basic Smart’ systems as well as for
developing ‘Advanced Smart’ systems of smart cities. The easiest examples of such
preventative measures include influencing time use in cities with automatic lighting;
influencing duration of activities in urban space with dynamic parking prices and func-
tioning times of services. Such ‘Advanced Smart’ systems can be utilized in cooperation
of urban sensor systems, the internet of things and ‘smart city infrastructure’ (Atzori et al.
2012).

6. Conclusions

Our objective in this research was to develop a methodology for measuring time use
patterns of urban life (or social time), using mobile communication datasets, which could
be useful in urban monitoring tools and smart city solutions. Using analogs from
climatology, we developed three temporal indicators (midnight, morning, midday) and
one time period (length of day) for measuring diurnal rhythms in a city. We also
developed a quartile-based approach for spatial analyses of timing in urban space and
tested these methods using datasets from Harbin, Paris, and Tallinn.

Our results highlight that there are differences in social time patterns across these
cities, each with its own characteristics and culture. In Harbin, activity starts earlier and
active days are longer than those in either European cities in which activities in the city
centers last for longer periods of time. Our indicators were also very good in identifying
time use differences within each city. There were clear differences in time use patterns
between the city center and suburban areas, which is also an area of interest for further
study on the causality between urban functions and human activities.

This paper offers an initial step in the use of CDR data in measuring and under-
standing the spatiotemporal variation between and within cities in the age of instant
access. This particular case study provides an initial thought for developing different
urban monitoring tools and smart city solutions that rely upon fast data feeds and the
automatic detection of urban change. Thus, it is in this context that the use of CDR data
and our indicators are the most relevant: especially in the application of ‘Basic Smart’ and
‘Advanced Smart’ systems governing urban space. These activity-based indicators provide
new sources for determining more flexible time standards in modern societies. The
methodology in this study can be extended in several aspects. For instance, besides the
four general indicators in this research, it is feasible to define more detailed indicators
based on the specific aggregated curves, e.g., we can define lunch break as the local
minimum point around noon, which corresponds to the time when the activity is the
lowest [10:00–14:00]. It is also valuable to further validate the robustness of the proposed
methods with richer data and more complex scenarios.
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