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The rapid development of information and communication technologies (ICTs) has
provided rich data sources for analyzing, modeling, and interpreting human mobility
patterns. This paper contributes to this research area by developing the Spatio-temporal
Edit Distance measure, an extended algorithm to determine the similarity between user
trajectories based on call detailed records (CDRs). We improve the traditional Edit
Distance algorithm by incorporating both spatial and temporal information into the
cost functions. The extended algorithm can preserve both space and time information
from string-formatted CDR data. The novel method is applied to a large data set from
Northeast China in order to test its effectiveness. Three types of analyses are presented
for scenarios with and without the effect of time: (1) Edit Distance with spatial
information; (2) Edit Distance with time as a factor in the cost function; and (3) Edit
Distance with time as a constraint in partitioning trajectories. The outcomes of this
research contribute to both methodological and empirical perspectives. The extended
algorithm performs well for measuring low-resolution tracking information in CDRs,
as well as facilitating the interpretation of user mobility patterns in the age of instant
access.

Keywords: human mobility patterns; trajectory similarity measure; mobile phone data
sets; edit distance; time series

1. Introduction

Modeling human mobility patterns has become a crucial research topic in various fields
such as Physics, Transportation, and Geographic Information Science (Kwan 2000, Du
Mouza and Rigaux 2005, González et al. 2008). Much progress has been made regarding
the theories, methodologies, and applications in this area (Kwan 2004, Miller and Han
2009, Song et al. 2010, Liu et al. 2012, Yuan and Raubal 2012b). Due to the natural
variability of individual mobility and the uncertain data quality of recorded location
information, analyzing human trajectories has been a challenging research question in
spatio-temporal data mining and knowledge discovery. Researchers have focused on
different aspects in this field, including intra-trajectory studies, i.e., understanding the
internal regularity of human motions (González et al. 2008), and inter-trajectory studies,
i.e., measuring trajectory similarity between individuals (Xia et al. 2011). The latter has
drawn more and more attention due to the increasing interest in understanding the social
interaction among demographic groups (Joh et al. 2002, Eagle et al. 2009). Measuring
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trajectory similarity can also support many real-world applications, such as traffic analysis
or crime prediction (Zheng and Zhou 2011, Baron 2012).

In addition, the rapid development of information and communication technologies
(ICTs) has introduced a wide range of novel spatio-temporal data sources (e.g., georefer-
enced mobile phone records) for researchers to explore the movement patterns of its
carriers (Ahas et al. 2010). Although mobile phones are capable of recording location
information through several ways such as assisted global positioning system (GPS), the
collected data are normally generated as scattered points in call detailed records (CDRs)
which include the IDs of connected cell towers for call activities. These data can be
viewed as strings of cell IDs characterized by low accuracy and precision in both space
and time dimensions. Although CDRs cannot represent the accurate locations of phone
carriers, these data can be considered as an approximation/sampling of the real trajec-
tories. Previous research has demonstrated the effectiveness of modeling user activity
patterns based on CDR data (Ahas 2005, Eagle et al. 2009). However, there has not been
sufficient research on how to investigate the similarity between user trajectories based on
these scattered and cell-based sample points. As argued in Kang et al. (2009), a similarity
measure for cellular space is different from one for Euclidean space because numerical
information for cellular space is not necessarily continuous. Therefore most of the existing
algorithms, such as the time Synchronized Euclidean Distance (SED) and the Hausdorff
distance (Zheng and Zhou 2011), are not easily applicable. In the field of mobile radio
technology, cells represent the smallest units of a given space. Although in practice the
signal coverage of cells can overlap with each other, cellular space is usually simplified in
previous research as units that can touch but not overlap with each other (Kolbe et al.
2008). A common conceptualization of these cells are Voronoi polygons (Sharifzadeh and
Shahabi 2006), which define a way of dividing space into a number of regions based on a
set of points (seeds), so that the corresponding region consists of all points closer to that
seed than to any other. For mobile phone data, the locations of base towers are usually
considered as seeds for generating a Voronoi diagram (Baert and Seme 2004,
Stergiopoulos and Tzes 2009). In this research we focus on measuring trajectory similarity
based on a Spatio-temporal Edit Distance algorithm, which was in its initial version
proposed for string matching and correction in the 1970s (Wagner and Fischer 1974).
This method belongs to the family of sequence alignment algorithms (Abbott 1995). It
calculates the minimum number of operations required to switch one string to another;
therefore it is highly suitable for matching series of cell IDs in CDRs. Another advantage
of this method is that it can deal with sequences of different lengths (Wilkes 2008), which
is a typical situation in CDRs. However, traditional Edit Distance deals with purely
qualitative information such as alphabet letters. In order to preserve the spatial informa-
tion in CDRs, we will modify the cost function of the algorithm to incorporate the spatial
distribution of cell towers. The modified algorithm will be helpful for measuring low-
resolution tracking information in CDRs, as well as facilitating the interpretation of user
mobility patterns in the age of instant access. Moreover, since the temporal aspect is of
major importance in human mobility, we will also present two exemplary analyses which
explicitly incorporate the effect of time.

The remainder of this paper is organized as follows: Section 2 describes related work
in the areas of human mobility, trajectory similarity measures, and the Edit Distance
algorithm. In Section 3, we introduce the basic research design, including the description
of the data set and the methodology. Section 4 presents the three variations of data
analysis based on the Extended Edit Distance method. In Section 5, we discuss the results
and further indications. Section 6 presents conclusions and directions for future research.

2 Y. Yuan and M. Raubal

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
2:

33
 0

7 
Ja

nu
ar

y 
20

14
 



2. Background

2.1. Human mobility and trajectory similarity measures

Modeling and interpreting human trajectories has been a challenging research question
due to the complex nature of human motions and the diverse formats of the recorded
location information. Larsen et al. (2006) identified five types of mobility: (1) Physical
travel of people (e.g., work, leisure, family life); (2) Physical travel of objects (e.g.,
products to customers); (3) Imagination travel (e.g., memories, books, movies); (4) Visual
travel (e.g., Internet surfing on Google Earth); and (5) Communication travel (e.g.,
person-to-person messages via telephones, letters, emails, etc.). However, these five
types of mobility are not independent. In this research, when referring to ‘human
mobility’ we focus on characterizing Physical travel of people (trajectories) from records
of Communication travel (CDRs).

Zheng and Zhou (2011) summarized existing research questions in trajectory analysis
and divided them into three categories: trajectory preprocessing (prior to the database-
level), trajectory indexing and retrieval (in databases), and advanced topics (above the
database-level). One of the advanced topics for analyzing trajectories is determining their
similarity/dissimilarity to each other. Researchers have investigated several methods to
quantify how similar two trajectories behave in spatial and/or temporal dimensions, and
these methods can be divided into two categories:

(1) Shape-based methods: This category eliminates the temporal aspect (i.e., speed)
and only focuses on the geometric characteristics (i.e., shape) of trajectories. A
trajectory can either be considered as a series of scattered visited points, or a
polygonal line that may self-intersect and have duplicate vertices. Typical meth-
odologies in this category include but not are limited to:

● Classical Euclidean Distance: The most straightforward method which adds
up the distance measures between each corresponding pair of points. However,
this method requires the two compared sequences to have the same number of
points, and is therefore not applicable to most real-world applications when
two compared series have a varying number of points.

● Hausdorff Distance: A shape comparison metric between two point sets,
which determines the longest of all the distances from a point in one set to
the closest point in the other set (Rucklidge 1997). This method is mostly
applicable for measuring pair-wise distances without considering the sequences
and directions of points.

(2) Time-based methods: Researchers have previously recognized the limitations of
shape-based methods; therefore, another category of methods has been developed,
which considers the role of temporal components in trajectories. In these methods
the compared features are considered as multidimensional time series data, and
can be processed by techniques extended from time series analysis and sequence
comparison (Buchin et al. 2009), such as:

● Synchronized Euclidean Distance. This algorithm uses the classic Euclidean
Distance by measuring the distance between two points at identical time
stamps (Potamias et al. 2006). However, this method does not perform well
with distortions and replications in trajectories.

International Journal of Geographical Information Science 3
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● Discrete Fréchet Distance (aka the Coupling Distance). A measure for the
similarity between two curves which considers the location and ordering of the
points along the curves; however as demonstrated by previous studies, this
method is very sensitive to outliers and displacements (Eiter and Mannila
1994).

● Dynamic Time Warping (DTW). This method has been well developed in
the field of speech recognition, signal processing, and related sequence mea-
sures in one-dimensional space (Senin 2008). Due to the fact that the one-
dimensional calculation in this algorithm can be easily replaced by distance
measures for spatial points, DTW can be extended to measure the trajectory
similarity of human motion (Makinen 2001, Yuan and Raubal 2012a). This
method is mostly applicable to deal with time series with potentially large
distortions in the time dimension; however, it is not specifically suitable for
string-formatted CDR data. The computing time load is also heavy compared
to other algorithms.

● Longest Common Sub-Sequence (LCSS). This method aims to find the longest
common subsequence in a set of sequences. Its basic idea is to match the
sequences allowing for the elimination of outliers (i.e., some elements remain
unmatched), which can be considered as a special case of the Edit Distance
method (Maier 1978). However, it is not very suitable for comparing human
trajectories due to the fact that outliers in trajectories may also have a significant
impact on the exploration of movement patterns.

Although the majority of existing similarity measures are based on Euclidean space,
researchers have also explored the comparison of trajectories in Non-Euclidean space
(i.e., network-based or cell-based space). For example, Won et al. (2009) proposed a new
scheme for trajectory clustering in road network space which judges the degree of
similarity by considering the total length of matched road segments. With the widespread
usage of mobile location-aware devices, a large amount of trajectory data are captured
every day and stored in CDRs. In this type of records, the trajectory of phone users can be
considered as a sequence of visited cell tower IDs in cellular space; meanwhile each
tower is georeferenced by geographic coordinates; therefore, traditional similarity mea-
sures in Euclidean space are not sufficient for this type of data (semi-qualitative, semi-
quantitative). Related research can be found in Kang et al. (2009), where the authors
conducted trajectory clustering in a cellular space. However, they only considered the
sequence of cell IDs as a regular string without taking into account the spatial distribution
of these cells. Shoval and Isaacson (2007) also demonstrated the potential of the
Sequential Alignment Method in comparing trajectories, but their method has the same
problem of not taking into account the real coordinates for each site. Other closely related
research was conducted by Dodge et al. (2012), where trajectories are separated into
segments with specific movement parameters (MPs) such as velocity. The authors used
alphabetical letters to denote different MP classes, i.e., the original trajectories are
converted to string sequences (i.e., ABADCB), then a modified version of the Edit
Distance was applied to compute the similarity between two MP sequences. This method
focuses on measuring the similarity based on selected MPs, therefore, it is most appro-
priate when the space-time geometry of the movement is not the major focus of the
analysis (Long and Nelson 2013). As mentioned in Section 1, CDR data are often
provided with low data quality, and it is difficult to extract reliable MP classes.
Therefore, this method is not directly applicable to the data used here.

4 Y. Yuan and M. Raubal
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In addition to similarity measures, it is often essential to classify spatial objects into sub-
groups in practice, so that objects within the same group are more similar to each other than
those in different groups (Miller 2009). These techniques have also been applied in the field of
trajectory analysis (Lee et al. 2007a), which concentrates on classification and clustering of
multiple trajectories based on their shapes and other features. Researchers have developed
various spatio-temporal clustering techniques for grouping observations that show similar
behavior in both spatial and temporal dimensions, from basic clustering techniques such as
k-means clustering and hierarchical clustering to more advanced techniques such as Hidden
MarkovModel (HMM) and Principle Component Analysis (PCA) (Lee et al. 2001). As argued
by Salvador and Chan (2004), one essential problem in clustering analysis is to determine the
number of clusters. Several methodologies have been proposed to tackle this issue, including the
Elbow (distinctive break) method, Gap statistics, etc. (Tibshirani et al. 2001), among which the
Elbow method has been widely adopted due to its simplicity to illustrate and implement (Foss
and Zaïane 2002, Salvador and Chan 2004).

In this research, to take CDR data analysis one step further, we extend the traditional
Edit Distance algorithm by incorporating the spatial distribution of cell towers, and then
apply the newly developed Spatio-temporal Edit Distance to compare trajectories
extracted from CDRs and conduct clustering analysis. As mentioned in Section 1, Edit
Distance is not a typical choice for measuring the similarity between human trajectories,
since it was mainly used for string matching; however, it is highly applicable to CDR data
due to the fact that CDRs are often string-formatted. Section 2.2 provides an overview of
the Edit Distance algorithm, and the detailed methodology will be elaborated in Section 3.

2.2. Edit Distance algorithm and its applications

The methodology in this research is based on the Edit Distance algorithm proposed by Wagner
and Fischer (1974), which measures the distance between two strings by computing the number
of edit operationswhen transforming one string to another. The pseudocode is shown as follows:

Given two strings S (s1, …, si) and T (t1, …, tj), in the optimal case, to transform S to T
there are three solutions:

● si is deleted and the rest s1, …, si-1 is transformed to t1, …, tj,
● s1, …, si is transformed into t1, …, tj-1 and we insert tj at the end
● si is changed into tj and the rest s1, …, si-1 is transformed to t1, …, tj-1.

Thus the recursive algorithm can be defined as

EditDistance i; j½ � ¼ min EditDistance i� 1; j½ � þ Cost delete sið Þ½ �; EditDistanceð
i; j� 1½ � þ Cost insert tj

� �� �
; EditDistance i� 1; j� 1½ � þ Cost replace si; tj

� �� ��
:

In string matching, the cost of each operation is usually set as constant 1, whereas in
real-world applications it is defined based on practical needs. For instance, linear gap-
costs are sometimes used where a run of insertions (or deletions) of length ‘x’ has a cost of
‘mx + n’ (‘m’ and ‘n’ are constants), indicating that if n is larger than 0, this penalizes
short runs of insertions and deletions (Powell et al. 2000). Researchers have also proposed
variations of this method, such as the Edit Distance on real sequence (EDR), the Edit
Distance with real penalty (EDRP) (Chen et al. 2003), and the Extended Edit Distance
(EED) (Marwan et al. 2008).

International Journal of Geographical Information Science 5
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The Edit Distance algorithm has also been applied in other fields besides spelling
correction. For example, Yang and Tiow (2007) employed this method for remote screen
updates to measuring the differences between a ‘picture’ of what the screen currently is
and another picture of what it should become. In Molecular Biology, Edit Distance is
utilized to test how similar two DNA sequences are (Smith and Waterman 1981). It has
also been applied to plagiarism detection (Zini et al. 2006).

In this research we will extend the classic Edit Distance method. The traditional
algorithm calculates the minimum number of operations when converting one sequence
to another. We take this method one step further by incorporating the locations of the cell
towers. This eliminates the disadvantage that every operation has equal influence (the
same cost function). Moreover, previous research has considered time as a third dimension
when constructing the space-time paths of individuals (Miller 2005, Kwan 2006). Classic
Edit Distance considers the order of how the points are aligned, but the effect of time is
not explicitly represented. Here we also investigate the effect of time in the modified cost
function. Although Lee et al. (2007b) used the same term ‘Spatio-temporal Edit Distance
(STED)’ to compare moving objects in video surveillance, our approach adopts a different
perspective in modifying the cost function. Compared to their vector-based approach, our
algorithm focuses on the impact of each operation on the overall spatial distribution of
trajectories. Based on this extended method, it is also feasible to explicitly adjust the
weights of spatial and temporal components in the cost function (Section 4.2.1). Besides
CDR data, the proposed Spatio-temporal Edit Distance can similarly be applied to other
data sources such as Bluetooth tracking data and location records restrained by road
networks or landmarks.

3. Research design

3.1. Data set

For this research we utilize a data set from Northeast China, which covers over 1.7 million
people and includes CDRs for a time span of 9 days (5 weekdays, 4 weekend days) in
City A.1 It includes the time, duration, and the location of the corresponding cell tower for
each mobile phone connection. The data set only covers voice calls (not including other
connections such as text messages or Internet connection). For each user, the CDR data
record the location of the nearest mobile phone tower when the user initiates or receives a
phone call. Based on the spatial density of cell towers, positional data accuracy is about
300–500 m. Table 1 provides a sample record. The phone numbers, cell IDs, longitudes,
and latitudes are not shown for reasons of privacy. Note that the location records in the
data set cannot represent the exact trajectory of each user due to both resolution (only
recorded when a call connection has been established) and accuracy (only the nearest
tower locations are recorded) issues. However, as argued in González et al. (2008), the

Table 1. Sample record from the data set.

Phone # 13601******

Cell ID 01**
Cell Longitude 126.*****
Cell Latitude 45.*****
Time 16:10:31
Duration 11 minutes

6 Y. Yuan and M. Raubal
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mobility of phone users indicates a high level of regularity based on a time cycle of
10 days. It is highly probable for an individual to return to the location where he/she was
first observed within the following 240 hours. Therefore, based on a summary of 9 days’
records, the data in this research can be utilized to depict the general characteristics of user
trajectory patterns (Yuan et al. 2012).

3.2. Methodology

Given two trajectories R1[p11(x11, y11, t11), …, p1n(x1n, y1n, t1n)] and R2[p21(x21, y21, t21),
…, p2m(x2m, y2m, t2m)] (where pij represent space-time points, and each xij, yij, and tij
represents the longitude and latitude of the connected tower, and the time of call activity),
it is highly possible that users can make several phone calls at the same location within a
short time interval; therefore, it is necessary to clean up the data by removing the
redundant points before the analysis. In CDRs, it is highly possible that the temporal
resolution of data is unevenly distributed. One user may attempt to establish a large
number of call connections in a very short time span (i.e., due to weak signal or bad
connection quality). For example, for a salesman, it is possible to make 10 phone calls
within 30 minutes in the office; however, it is not sensible to keep all the data points and
assume that the salesman visits the office 10 times within 30 minutes; hence eliminating
these points helps us to reduce calculation bias and the time load of the algorithm. For
instance, given three Users A, B, and C:

● A made 1 phone call at location X, 10 phone calls at location Y (within a very short
time span, e.g., 30 minutes), and 1 phone call at location Z.

● B made 1 phone call at location X, 1 phone call at location Y, and 1 phone call at
location Z.

● C made 10 phone calls at location Y (within a short time span, e.g., 30 minutes)

Based on the provided information, it is reasonable to assume that B’s trajectory is more
similar to A (compared to User C) (i.e., distance (A,B) < distance (A,C)), since the 10
phone calls at location Y within 30 minutes can be considered as ‘a single visit’. However,
if we keep all 10 phone calls at location Y as 10 points, the sequences for A, B, and C are
as follows:

A : XYYYYYYYYYYZ; B : XYZ; C : YYYYYYYYYY

Since the calculation of Edit Distance is highly dependent on the number of opera-
tions, the result will indicate that distance (A,B) > distance (A,C), which is contradictory to
our common sense. Hence, it is necessary for us to eliminate redundant points within a
short time span. Here the redundant points are defined as follows (Figure 1):

For any two consecutive points pi and pi+1 in a given trajectory, if pi and pi+1 are located
within the cell of the same mobile phone tower, and the time difference ti+1 – ti < ΔT (ΔT is
a threshold value, in this paper predefined as 0.5 hour), pi+1 is defined as a redundant point
and removed. Meanwhile ti is updated as the average of ti and ti+1 (for instance, in Figure 1,
t4 is deleted and t3 is updated as 10:05).

As discussed in Section 2.1, in CDRs, the trajectory of a phone user can be represented by a
sequence of cell IDs, for example, [Cell5, Cell6, Cell5, Cell4, Cell3, Cell5]. The distance
between two trajectories can be measured by the cost of operations required to transform one
sequence to the other. In practice, cost functions are often defined in a manual fashion, from
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commonly used constant values (Zini et al. 2006) to customized weighted functions (Powell
et al. 2000). In this research, the tracking information in CDRs is not purely qualitative,
indicating that each operation should be assigned a different cost value based on the locations
of the deleted/inserted/replaced points. From a geometric perspective, trajectories can be con-
sidered as a set of finite points, where the centroid of a certain trajectory is calculated as the
average location of these points. Since a centroid minimizes the sum of squared Euclidean
distances between itself and each point in the set, it can be considered a ‘balance point’ for the
whole trajectory (Johnson 2007), which is often used as a reference or benchmark point in spatial
point pattern analysis, such as the Centroid Distance Function (Yang et al. 2008, 2012).
Therefore, deleting a point that is faraway from the centroid leads to a higher impact on the
spatial distribution of the original trajectories than deleting a nearby point. The main improve-
ment of the extended algorithm is to assign the operation cost based on the impact of each
operation by measuring the centroid displacement after each operation. The cost functions are
defined as:

Cost½Delete ðp1iÞ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� cÞ
��	 Pn

k¼1
x1k

n



�
	 Pn

k¼1;k�i
x1k

n� 1


�2
þ
�	 Pn

k¼1
y1k

n



�
	 Pn

k¼1;k�i
y1k

n� 1


�2�
þ c

�	 Pn
k¼1

t1k

n



�
	 Pn

k¼1;k�i
t1k

n� 1


�2
vuuut

(1)

(Displacement of the centroid in the trajectory R1 after removing p1i);

Cost ½Insert ðp2jÞ� ¼

ð1� cÞ
��	 Pn

k¼1
x1k

n



�
	 Pn

k¼1
x1k þ x2j

nþ 1


�2
þ
�	 Pn

k¼1
y1k

n



�
	 Pn

k¼1
y1k þ y2j

nþ 1


�2�
þ c

�	 Pn
k¼1

t1k

n



�
	 Pn

k¼1
t1k þ t2j

nþ 1


�2
vuuut

(2)

(Displacement of the centroid in trajectory R1 after inserting p2j);

Redundant point

t4 = 10:10

T

t3 = 10:00

t2 = 8:00

t1 = 6:00

Figure 1. Removing redundant points in CDR-based trajectories.
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Cost ½Replace ðp1i; p2jÞ� ¼

ð1� cÞ
��	Pn

k¼1
x1k

n



�
	 Pn

k¼1;k�i
x1k þ x2j

n


�2
þ
	Pn

k¼1
y1k

n



�
	 Pn

k¼1;k�i
y1k þ y2j

n


��2

þc

�	 Pn
k¼1

t1k

n



�
	 Pn

k¼1;k�i
t1k þ t2j

n


�2
vuuut

(3)

(Displacement of the centroid in trajectory R1 after replacing p1i by p2j).
Here we introduce a constant c 2 [0, 1] to balance the influence between the spatial

and temporal dimensions. For c = 0 the equations become purely spatial, whereas when
c = 1 the cost functions only consider the time when the activities happened and ignore
the impact of the spatial dimension. This can be utilized for exploring the similarity
between phone call occurrence patterns, i.e., to answer questions such as ‘how similar is
User A to B when only considering their phone call occurrence?’ In this research spatial
effect is our major focus; therefore, we start the analysis in Section 4.1 with c = 0. In
Section 4.2 we also discuss the time effect when c > 0.

Note that two corresponding operations may have different weights in the cost
function depending on which one of the two trajectories is considered the target, i.e.,
‘replacing p1i by p2j in R1’ may have a different impact compared to ‘replacing p2j by p1i
in R2’. This may result in a slight difference between EditDistance(R1, R2) and
EditDistance(R2, R1). The rationality of asymmetric distances has been discussed in
Cognitive Science (Tversky 1977) and Geographic Information Science (Janowicz et al.
2011), but in this research we focus on the physical aspects of objects (instead of the
cognitive aspects). Hence, to preserve the symmetry of distance calculation we choose the
average of the two values.

As indicated in the methodology, the proposed algorithm incorporates the displacement
of the centroid in the cost function. Compared to traditional methods of calculating the
bounding box of trajectories (Schneider 1999, Han et al. 2004), it also considers the
frequency and order of how different points are visited. Moreover, it improves upon the
classic Edit Distance in which the length of sequences has a large impact on the results by
(1) eliminating redundant points and (2) incorporating the spatially enabled cost functions.
In the extended algorithm, if a point is near the centroid (i.e., a low-influence point), an
operation on this point will not result in a large difference even if it appears repeatedly in the
trajectories.

Although the spatial attribute is of major importance in this research, we are also
interested in the effect of time in the cost functions. In Section 4 we will present three
analyses to demonstrate the advantages of the proposed algorithm: (1) a generic
similarity measure (when setting c = 0), which characterizes the similarity between
trajectories without explicitly specifying the effect of time; (2) time-enabled comparison,
which considers the time dimension as a parameter in the cost function (c > 0); and (3)
time-enabled comparison, which introduces time as a constraint in partitioning
trajectories.

4. Analysis and results

4.1. Generic analysis

As indicated in Section 3, in the generic analysis we introduce various applications of the
proposed Spatio-temporal Edit Distance focusing on the effect of ‘space’ in the cost
functions, including a trajectory comparison analysis and a clustering analysis. The former
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one demonstrates how to identify users with the most similar trajectory patterns, as well as
how to detect outlier trajectories based on average distances. The latter one shows how
sample trajectories are grouped into clusters with different distribution patterns in both
activity space and movement directions.

4.1.1. Trajectory comparison

In a first step, we need to eliminate those users from the data set who have too few call records.
After data preprocessing, we obtained 844,784 users for weekdays and 675,832 users for
weekend days whose CDRs include more than 10 records. Figure 2 shows the result of a
comparison between an example User A and his/her most similar users based on our
algorithm. For comparison, longitude and latitude values in our sample are scaled to the
range [0, 1]. Trajectories B and C are the most similar trajectories to A on weekdays
(Figure 2a, scaled distance = 0.0017) and weekend days (Figure 2b, scaled distance = 0.0035).
As can be seen, the algorithmmainly focuses on matching the activity area of two trajectories.
Moreover, it also considers the order of how the points are visited in time.

As indicated in Figure 2, the proposed method is effective in identifying the similarity
of trajectory patterns in terms of identifying the range of activity space and the order of
visited points. The result of this analysis can be useful for phone companies to interpret
user activities, as well as improving algorithms in social network applications, such as
‘friend recommendation’ based on movement patterns.

For a better overview of the general trend in user trajectories, we randomly selected a
smaller sample set of 1000 users, and calculated the average distance between each user and
all the other 999 users (which also forms a distance matrix). This average distance can be
considered as an indicator of how ‘different’ a user behaves in terms of mobility pattern
compared to the others. As shown in the weekday histogram (Figure 3a, mean
value = 0.148), the distance follows a skewed normal distribution, and the positive tail
indicates that there is a certain number of users with a large average distance (>0.5).
Moreover, the mean distance on weekend days (Figure 3b, mean value = 0.124) is tested
to be smaller than the one on weekdays based on a two sample t-test (significance level
P = 0.05), indicating that the trajectory patterns on weekend days are less diverse than those
on weekdays. This is inconsistent with common sense that weekend activities are more
random; however it confirms the results of a previous study by Yuan and Raubal (2012a).

Trajectory A

(a) (b)

Trajectory B

Day 5

Day 4

Day 3

Day 2

Day 1

Trajectory A
Trajectory C

Day 4

Day 3

Day 2

Day 1

Figure 2. Example analysis: the most similar trajectories for (a) weekdays and (b) weekend days.
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For illustration we also plot the spatial trajectories of the two users who have the
largest average distance (one for weekdays and one for weekend days). As can be seen in
Figure 4a, the user’s activity area is quite large (some points are even located outside of
the target area). Similarly, the pattern indicated in Figure 4b is distant from the city center
with most activities outside of the study area (built-up areas in the city are delineated in
Figure 4). Such analysis and visualization can be helpful for detecting abnormal patterns
in mobile networks, as well as providing input for service providers and certain user
groups who are interested in mobility pattern comparison.

4.1.2. Clustering analysis

The comparison analysis demonstrated that the proposed algorithm can be utilized to
measure the similarity between any pair of user trajectories. For a group of users, it is
useful to take a step further from similarity measure to clustering analysis. In the
remainder of this section, in order to enhance the interpretation of the general pattern
for the sample data set, we also conduct a hierarchical clustering analysis (here we use
weekday patterns as an example).

To determine the number of clusters, a variation of the Elbow method is utilized and
the number of clusters (on the x axis) is plotted against the merge distance (on the y axis).
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Figure 3. Histogram of average distance on (a) weekdays and (b) weekend days.

Day 5
(a) (b)

Day 4

Day 3

Day 2

Day 1

Day 4

Day 3

Day 2

Figure 4. Users with the largest average distance on (a) weekdays (b) weekend days.
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The merge distance is defined as the differences between two merged clusters (in this case
calculated as the increase in the ‘error sum of squares’ (ESS) after fusing two clusters into
a single cluster based on the Ward’s linkage method) (Ward 1963, Everitt 2011). As
indicated in Figure 5, the maximum curvature appears between the third and the seventh
data points. In real-world applications the ‘elbow point’ cannot always be unambiguously
identified (Ketchen and Shook 1996), and the choice of criteria depends on practical
needs. Mathematically, the second derivatives of a curve show the slope of tangent line
changes at each local point, which provides a useful indicator for ‘the rate of change’.
Here we define the ‘Elbow point’ as the point where the second derivative reaches the
largest value between point 3 and point 7.

Figure 5 demonstrates that the Elbow value occurs when the number of clusters equals
5; therefore we classify the sample into five clusters. We then plot the point density
distribution of user trajectories within the five clusters. As shown in Figure 6, these
clusters are spatially distributed as follows:

Cluster 1: Clustered in the Northwest of the study area
Cluster 2: Evenly distributed across the city center
Cluster 3: Clustered in the North of the study area
Cluster 4: Clustered in the East of the study area
Cluster 5: Clustered in the Southwest of the study area (distant from the city center).

To better interpret the activity patterns of the five clusters, we also conducted a stop
extraction based on the methdology described in Phithakkitnukoon et al. (2010).2 We
extracted the most frequent stops during daytime (7 am to 7 pm) on weekdays (these
locations can be considered as work locations for most individuals working on a regular
shift). Due to data resolution issues, we managed to extract the daytime stop locations for
584 users out of 1000. Figure 7 presents the centroids of these stops for each of the five
clusters. This result confirms the differeces in spatial distribution of activity region for the
five clusters in the previous Figure 6.

Investigating the spatial distribution of different population clusters can provide input
for various types of social studies such as spatial segragation and neighborhood approx-
imation. Besides the spatial distribution of activity space, previous research also focused
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Figure 5. Determining the number of clusters (smoothed data).
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on investigating direction distribution of trips (Brockmann and Theis 2008). Since the
movement between two consecutive phone calls can be considered as a displacement
(Kang et al. 2012), we calculate the direction distribution of displacements in user
trajectories and plot the direction distribution of these five clusters (the dotted red line
indicates an average distribution of all five clusters).

The direction distribution provides valuable insights regarding the diversity of user
movement. As indicated in Figure 8, all five clusters show a similar non-uniform pattern
(in general higher distribution in the east–west direction compared to the north–south
direction). More specifically, Clusters 1, 2, 3, and 5 appear to have two major directions
(northeast east (NEE) and southwest west (SWW)), whereas Cluster 4 dominates on
straight east (E) and west (W) directions. In traditional assumptions of Lévy flight,
movement direction is considered as randomly distributed (Brockmann and Theis
2008); however, Liu et al. (2012) proved that the direction distribution of human move-
ment is strictly restricted by the geographic boundary of the living environment. As
shown in Figure 9, in City A the dominating direction of the urban area is NEE–SWW.
This result confirms the findings in Liu et al. (2012) that the movement directions of
human beings are restricted by the built-in environment, hence, they are not randomly
distributed.

The Hellinger coefficient is often used to measure the correlation between two
distributions (Vegelius et al. 1986). Given two concrete density distributions p(x) and
q(x) defined on the same domain X, the Hellinger coefficient RH (RH 2 [0,1]) is given by
the following equation:

RH ¼
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
(4)

Table 2 represents the Hellinger coefficient between the direction distribution of each
cluster and the average distribution (the red dotted curves in Figure 8). As can be seen, the

Cluster 1 Cluster 2

Weekday mobility distribution

Cluster 4 Cluster 5

Cluster 3

Figure 6. Point density distribution of the five clusters.

5
1 3

2 4

Figure 7. Centroids of most frequent stops during daytime for five clusters.
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coefficient between every pair is greater than 0.95, indicating a high level of similarity in
terms of movement direction for the five clusters.

In addition, it is also useful to visually identify outlier patterns that deviate from
regular circumstances. For instance, in Cluster 5 there appears to be a higher density of
movements along the SWW–NEE direction compared to Clusters 1, 2, and 3.

In this section, we demonstrated the analysis results based on the proposed Spatio-
temporal Edit Distance method. Another valuable part of the presented method is that it
can be further customized based on context and practical needs. For instance, if research-
ers are interested in the question ‘whose night-hour activity pattern is similar to User A?’
they can incorporate the temporal constraints when calculating the distance between two
trajectories. This category of time-related research questions will be discussed in the
following section.

Figure 9. The shape of City A and its street networks.

Cluster 1 Cluster 2 Cluster 3

Cluster 5Cluster 4

Cluster 1 Cluster 2 Cluster 3

Figure 8. Direction distribution of the five clusters.
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4.2. Extended analysis including time dimension

As discussed in Section 2, time plays an important role in measuring the similarity
between two trajectories. For the time dimension, the semantic of the centroid can be
considered as a central time point when a specific user prefers to make phone calls.
Compared to the original Edit Distance method, it allows for calculating the displacement
in the time dimension. Although the Spatio-temporal Edit Distance algorithm as demon-
strated in Section 4.1 takes into account the order of how locations are visited, it does not
explicitly represent the impact of time. In practice, it is highly possible that a comparison
between trajectories involves constraints on when the activities are conducted. In this
section we provide two analyses for comparing trajectories under a temporal constraint.
The analyses are conducted from two perspectives: (1) Time as a cost function parameter;
and (2) Time as a constraint in partitioning trajectories.

4.2.1. Time as a cost function parameter

Figure 10 shows the result of an analysis with c = 0.5 (cf., Equations (1), (2), and (3)). The
example uses the weekend trajectory of the same User A as in Figure 2, where trajectory D
shows the most similar user path when considering an equal contribution from both temporal
and spatial dimensions. Figure 10b presents the distribution of phone calls at different times
on 4 weekend days, where each point represents a recorded phone connection. When setting
c = 1 (purely temporal) or c = 0 (purely spatial), the calculated Spatio-temporal Edit Distances
betweenA andD are still smaller than 85% of the users in the sample, indicating that these two
users demonstrate similar activity patterns in both space and time dimensions. We also added
an explanatory sensitivity test of c values in the Appendix. In real-world applications,
researchers can adjust the value of c based on practical needs.

Table 2. Hellinger coefficients of direction distribution.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

RH (compared to average pattern) 0.994 0.994 0.991 0.976 0.982

Trajectory A

(a) (b)

Trajectory D
24:00

16:00

Trajectory A

Trajectory D

08:00

00:00
Index of  phone call

Figure 10. Two similar trajectories (a) space-time paths; (b) temporal patterns.
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4.2.2. Time as a constraint in partitioning trajectories

The time-enabled cost function in Section 4.2.1 allows for explicitly investigating the
influence of temporal factors when comparing two trajectories; in practice, users are often
more interested in a certain time interval, such as ‘does User B have a similar mobility
pattern to User A in the morning/afternoon/evening?’ In order to explore this type of
questions, we extend the analysis from a different perspective, where time constraints are
used to partition the trajectories; i.e., each trajectory is divided into sub-trajectories based
on their timestamps in CDRs. To investigate the similarity of two trajectories under given
temporal restrictions, it is necessary to calculate the distances between all pairs of sub-
trajectories and construct a distance matrix which shows the correlation between each part
of the trajectories. Here we demonstrate how this matrix is constructed and which activity
patterns can be explored based on these matrices.

Given two users with trajectories R1 [p11(x11, y11, t11), …, p1n(x1n, y1n, t1n)] and R2

[(p21(x21, y21, t21), …, p21(x2m, y2m, t2m)] with n and m points, respectively, both R1 and R2

are regrouped into 4 sub-trajectories: [R11, R12, R13, R14] and [R21, R22, R23, R24], where
each sub-trajectory R1j (R2j) only contains space-time points that fall into the correspond-
ing time interval Tj (j 2 [1, 2, 3, 4]), where Tj is defined as:

T1 (Midnight): [0:00–6:00]; T2 (Morning): [6:00–12:00];
T3 (Afternoon): [12:00–18:00]; T4 (Evening): [18:00–24:00]

The distance matrix is constructed as: Dij = EditDistance(R1i, R2j), i, j 2 [1, 2, 3, 4].
Note that R1i, R2j can be empty sets if the user does not have any call activity during the
given period. In this case we manually assign that Dij equals –1.

To illustrate the method, we further select 246 users from the previous 1000-user
sample whose weekend trajectories have more than five time points in each of the last
three time intervals (except for T1 [0:00–6:00] due to low phone call counts after mid-
night). It is feasible to construct a matrix which indicates the (5%, 95%) range of
calculated distances between different time intervals (Table 3). For instance, the pair
(0.0282, 0.195) indicates that 5% of the distances between two trajectories in T1 are
smaller than 0.0282, while 95% of these distances are smaller than 0.195. This range table
provides an effective way to conduct an exploratory analysis based on the sub-trajectories
corresponding to different time intervals, as well as detecting potential outlier patterns.

Here we construct the distance matrix between two example Users E and F (Table 4).

Table 3. Range of distance matrix for different time intervals.

T1 Midnight T2 Morning T3 Afternoon T4 Evening

T1 Midnight (0.0282, 0.195) (0.0543, 0.639) (0.0548, 0.613) (0.0437, 0.357)
T2 Morning – (0.0382, 0.330) (0.0379, 0.316) (0.0361, 0.321)
T3 Afternoon – – (0.0373, 0.303) (0.0357, 0.308)
T4 Evening – – – (0.0322, 0.221)

Table 4. Example distance matrix.

Re1 Re2 Re3 Re4

Rf1 0.128 0.852 0.358 0.341
Rf2 0.131 0.113 0.0567 0.0342
Rf3 0.0640 0.171 0.0702 0.0628
Rf4 0.0766 0.155 0.0589 0.0508
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From Table 4, it is straightforward to identify the most similar sub-trajectory for User
E in each time interval (marked as grey): Re1 → Rf3; Re2 → Rf2; Re3 → Rf2; Re4 → Rf2.
The results demonstrate that the morning pattern (6:00–12:00) of User F is similar
to the morning/afternoon/evening patterns of User E, whereas the afternoon pattern
(12:00–18:00) of User F is similar to the midnight pattern of User E.

We can also extract outliers based on the reference ranges in Table 3. Here all the
numbers that lie outside the ranges (Table 3) are considered outliers. As can be seen, two
pairs of result distances (Re2, Rf1) and (Re4, Rf2) are recognized as outliers, indicating
that the morning pattern of User E is different from the midnight pattern of User F
(distance = 0.852; larger than 95% of the values in the sample), whereas the evening
pattern of User E is very similar to the morning pattern of User F (distance = 0.0342,
smaller than 5% of the values in our sample).

This section presented two extended analyses which incorporate the time dimension
when calculating the similarity between trajectories. The method can be applied to various
scenarios where researchers are interested in the impact of time when comparing different
mobility patterns. Note that in this section we only demonstrated the method using
individual examples; however, all the demonstrated analysis (i.e., clustering) in Section
4.1 can also be applied to explore the group patterns of user trajectories after considering
the role of the time dimension.

5. Discussion

As presented in Sections 4.1 and 4.2, the Extended Edit Distance method can be used to
measure the similarity of mobile user trajectories from CDRs. We demonstrated three
types of analysis for this novel extension, where each analysis corresponds to a different
scenario:

● Edit Distance with spatial information: This method calculates the cost function of
each operation based on the displacement of the trajectory centroid (c = 0).
Although the method considers the relative order of how the points are visited (i.
e., site X is visited before site Y), it does not explicitly state the effect of absolute
time (i.e., whether a site was visited in the morning or in the afternoon). This
method can be used when time is not considered a major component in the analysis.

● Edit Distance with spatial information and time as a parameter in the cost
function: This analysis includes time as a third dimension in the cost function.
The parameter c controls the weight for both space and time dimensions. When
c = 1 the cost function only considers the temporal deviation of points. This method
is appropriate for analyses that test the overall effect of time.

● Edit Distance with spatial information and time as a constraint in partitioning
trajectories: In this analysis, trajectories are divided into sub-components based on
the time when each site is visited. From a technical perspective, this analysis uses
the same distance function as in Section 4.1 but with a finer temporal resolution. It
can be applied when researchers are interested in investigating patterns for different
time intervals. The granularity of time intervals can be determined based on context
and practical needs. This method works best when the phone records of a particular
user are distributed evenly in time, which makes it feasible to extract sub-trajec-
tories for each individual time interval.
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From an empirical perspective, the analysis in Section 4.1 also indicates interesting patterns
in the study area where trajectories are classified into five clusters. Each cluster concentrates
on a specific region of the study area. There are no substantial differences in the moving
direction analysis, i.e., all five clusters show a higher distribution in the east–west direction
compared to the north–south direction, which is highly correlated with the layout of the
study area; however, the results indicate a few abnormal patterns, for instance, Cluster 5
appears to have a higher number of movements in the SWW–NEE direction. As indicated in
Figure 6, the point density distribution of Cluster 5 also deviates from the other four clusters,
which provides valuable input for identifying users who behave differently from the
majority (i.e., outlier patterns in Figure 4). Moreover, weekend patterns show a slightly
smaller average distance (less diverse) than weekday patterns as indicated in Section 4.1,
which is consistent with conclusions from previous research (Yuan et al. 2012). Our
preliminary hypothesis is that in the study area most people still tend to visit regular
locations (e.g., preferred grocery stores) in their leisure time, although movements on
weekends have less spatial constraints (e.g., work locations), but more comprehensive
data are needed to test this hypothesis, which is not the major focus of this paper.

In this analysis we adopted centroids as reference points when calculating the cost
function. There are two major reasons for utilizing centroids in the proposed algorithm.
First, as stated in Section 3.2, a centroid can be considered as the center of an activity
region, which is often used as a reference or benchmark point in spatial point pattern
analysis. Even though human beings may have more than one major activity region (e.g.,
home, work, gym, grocery stores), the centroid can still be used to represent the geometric
center of the entire trajectory. This is not only applicable for monocentric movement
patterns, but can also be applied to more complex scenarios. For instance, in motion
detection and video surveillance studies, the centroid pixel is often selected as a repre-
sentative pixel when tracking multicentered moving objects (Hu et al. 2004, Fernández-
Caballero 2005). Second, the main point of developing the Spatial-temporal Edit Distance
is to quantify the impact of each operation based on its spatial characteristics. For
centroids, this impact can be easily determined by the displacement of the centroid after
each deletion/insertion/replacement operation; therefore, it is important for the Extended
Edit Distance method to have a single point of reference instead of different points in
terms of calculating the cost function.

However, it is still interesting to investigate how other forms of reference points affect
the cost function, such as utilizing regularly visited stops. These techniques may be
helpful for improving the accuracy of the analysis in some cases. We provide a pilot
study in the Appendix to compare the cost functions based on centroids and extracted
stops. The results of this study indicate no significant differences. In addition, CDR data
usually suffer from low resolution and accuracy; therefore, the procedure of extracting
stops cannot be conducted for every user in the data set; instead, it only works when there
are a sufficient number of records for a specific user. Hence, stop-based cost functions are
not very flexible and generalizable for different data sets. The calculation of stops also
increases the complexity of the methodology, which may be time consuming for large data
sets (i.e., with terabytes of data). Based on above reasons, we believe that using centroids
provides more flexibility for our data in this study, and allow us to make use of a larger
portion of the information provided in the sparse data set.

In addition, the Edit Distance algorithm belongs to the family of dynamic program-
ming, which is relatively time consuming with a time complexity of O(m*n) (where m and
n are the lengths of two series). For this research we used a study time interval of 9 days,
which is relatively short. In order to compare data for a longer time interval, it will be
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necessary to simplify the trajectories before conducting the distance calculation (i.e.,
aggregate points that are near to each other) to reduce computing complexity. It is also
feasible to further improve the algorithm, such as define a binary or categorical cost
function (i.e., two points within a threshold distance x are defined to be the same) if the
application does not require an accurate numerical cost function. In addition, adopting
high performance computing such as cluster computing or GPU computing can also be
helpful for improving the performance of the algorithm.

It is also worth noting the unavoidable uncertainty issues when analyzing user
trajectories utilizing CDR data. There are various types of uncertainty involved in our
analysis. As argued in Xia (2005), uncertainty exists in the data sets to be mined, the
mined knowledge and the process of applying new knowledge to other data. The major
types of uncertainty involved in this analysis are (Yuan et al. 2012):

● Low data quality due to insufficient knowledge: The trajectories extracted from
CDRs are both inaccurate and imprecise. The accuracy of data depends on the
spatial density of base towers in the study area. In addition, the temporal resolution
of data also depends on the frequency of phone calls; hence, as discussed in Section
1, CDRs can only represent an approximation of the real trajectories.

● Imperfection of models and algorithms: As stated in Box and Draper (1987, p.
424): ‘Essentially, all models are wrong, but some are useful.’ Although we have
demonstrated the effectiveness of Spatio-temporal Edit Distance method when
comparing human trajectories, using alternative methods will inevitably impact
the uncertainty of the results (i.e., the choice of different cost functions).

● Natural variability of human mobility: Although previous research has proved the
predictability of human mobility (González et al. 2008), randomness is an essential
nature of human mobility.

Several potential methods can be adopted to quantitatively measure these uncertainty
issues, such as probability theories, Bayesian network, and fuzzy sets. This also provides
an important direction for future research.

6. Conclusions and future work

In this paper, we have developed a Spatio-temporal Edit Distance method for measuring
trajectory similarity of mobile phone users. The main contribution of this paper is the
cost function to extend the traditional Edit Distance algorithm in order to incorporate
both spatial and temporal factors. We also demonstrated its effectiveness in case studies
based on a sample data set. Three types of analysis were presented for scenarios with
and without the effect of time: (1) Edit Distance with spatial information; (2) Edit
Distance with time as a factor in the cost function; and (3) Edit Distance with time as a
constraint in partitioning trajectories. The outcomes of this research contribute to both
methodological and empirical perspectives. Compared to closely related work by
Shoval and Isaacson (2007), our study advances this research from the following
perspectives:

● Incorporated spatial coordinates in cost functions. From a statistical perspective,
there are four levels of measurement: Nominal, Ordinal, Interval, and Ratio
(Stevens 1946). Shoval and Isaacson (2007) incorporated nominal measurement
(categorical geographic locations such as ‘home’ and ‘work’) in sequence
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alignment to study human activity patterns; whereas in this research, we take a step
further by adding ratio measurement (true space-time coordinates) in measuring the
similarity of two sequences.

● Tested the method in a large-scale environment (approximately 450 km2) compared
to their small-scale environment (Akko’s old city, approximately 0.5 km2).

The method can be applied for exploring both individual-level and group-level patterns of
user trajectories. Potential cases for analysis include but are not limited to:

● Individual-level: This method may be used to identify similar trajectory patterns for
a given user. Computation can be from a spatial, temporal, and spatio-temporal
perspective. It is also feasible to explore the similarity/dissimilarity between dif-
ferent sub-trajectories of two users based on predefined time intervals.

● Group-level: For a group of users, the Spatio-temporal Edit Distances can be
employed to construct a distance matrix, which can be later used for user trajectory
clustering and outlier pattern detection. It is also interesting to calculate the average
distance between each user and the others, and use information to extract outlier
users who behave differently from the majority.

The analysis of the sample data set revealed several remarkable trends and characteristics
of the study area. The average distances of users follow a skewed normal distribution,
which indicates that there are several outlier patterns of users that behave differently
compared to the other users in the sample set. It was discovered that these outliers have
large activity spaces in and out of the city. The five clusters demonstrate the major
movement direction in the city (east–west) with certain outlier patterns (i.e., Cluster 5).

This research provides us with new insights regarding the study of similarity between
two trajectories based on CDRs. The analysis demonstrated that the proposed algorithm
can be easily applied to identify patterns in a cellular environment, as well as providing
input for policy-makers and the location-based services market. The proposed method also
contributes to the advancement of geographic knowledge discovery in the age of instant
access, where trajectory data are commonly acquired with low resolution and precision.

In the future we will further modify the algorithm to incorporate various types of cost
functions that also take into account the movement directions and additional factors/
dimensions of importance, such as location semantics (i.e., home, work). This is necessary
since two trajectories with the same geometric properties can be considered different if
they are different in other aspects (i.e., with different travel purposes). A thorough
understanding of these factors is essential for designing appropriate cost functions
for practical needs. In addition, when eliminating redundant points, we predefined the
threshold as 0.5 hour, it may be worthwhile to investigate how this threshold influences
the performance of the algorithm. One limitation of this method is the lack of reliability
assessment (Shoval and Isaacson 2007); therefore, in the future it will be necessary to
develop a framework for quantifying its effectiveness and the uncertainty issues. We will
also look into applying the method to other cities and countries to test its robustness.
Moreover, in this research we take the average value of EditDistance(A, B) and
EditDistance(B, A) to keep the symmetry of the measurement; it will be interesting to
investigate how asymmetry affects the results. Another promising future work direction
relates to comparing the results of Edit Distance for CDRs and regular trajectory similarity
measures for GPS data. This method can also be utilized in a wide range of application
fields, including crime pattern detection and traffic analysis.
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Notes
1. The city name is not shown as required by the data provider.
2. In Phithakkitnukoon et al. (2010), the trajectories are regrouped into sub-trajectories based on

the restriction that any two consecutive points within a sub-trajectory are located within the cell
of the same mobile phone tower. If the time duration of a sub-trajectory is longer than the
temporal threshold ΔT (here defined as 0.5 hour), the sub-trajectory is identified as a stop for
the particular user. Here we conduct the extraction process on the original trajectories (before
removing redundant points as discussed in Section 3.2).
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Appendix

A. Sensitivity test of c values.
Here we provide a sensitivity test for the constant c. For the same example User A in Figure 2, we
calculate the average distance between A and the other 999 users in the sample set under different c
values (see attached figure, 0 ≤ c ≤1). As can be seen from Figure A1, when the value c increases,
the average distance increases smoothly. This is helpful for understanding how the distance values
vary for a single user when assigning different weights for the spatial and temporal dimension;
however, for inter-trajectory analysis, the relative ranking plays a more important role than the
absolute value, so the magnitude of the values under different c values cannot provide direct
evidence when comparing between different users. In practice the choice of c should be determined
by the specific requirements.
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Figure A1. Sensitivity test of c values.
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B. The choice of reference points in cost functions
We conducted a pilot study which utilizes estimated stops to calculate the cost function (as a
comparison to the centroid-based algorithm). The cost function is described as follows:

● Estimate two major stops for each user based on the algorithm described in Section 4.1.2. As
argued by Bagrow and Koren (2009), most human beings have at least two major regularly
visited points, in most cases, home and work locations. Here we select the most w (Monday
– Friday 8 am to 5 pm) and the most frequent stop during night hours (7 pm to 7 am).

● Redefine cost function

Cost [Delete (si)] = the average distance between si and the estimated two stops of trajectory S.
Cost [Insert (tj)] = the average distance between tj and the estimated two stops of trajectory S.
Cost [Replace (si, tj)] = the distance between si and tj.

● Case study

We then conducted an average Edit Distance analysis as in Figure 4. We selected another 1000 users for
whom themost frequent stops are extracted for both day and night hours. Note that these are not the same
1000 users as in Section 4, due to the fact that the stop extraction only works for a small fraction of the
users based on their CDR records; therefore we expanded the selected sample to ensure a 1000 sample
size for the pilot study. Although the magnitude of the average distance changes, the result shows the
ranking of these distances still appears to be stable, and no significant difference was found based on a
Wilcoxon Signed Ranks Test for the difference in rankings. Table A1 also shows the top 20 users with
the smallest average distances as a demonstration. Except for one user (highlighted in bold font) the
ranking of average distances is the same as when using the original centroid-based method.

This pilot study indicates that it is a feasible option to use points of interest (POIs) as reference
points in the cost functions. However, as discussed in Section 5, we believe that using the centroid is
more flexible and reliable for our data in this study.

Table A1. Users with the smallest distances.

User ID

Average distance
(Centroid-based

method)

Ranking
(Centroid-based

method)
Average distance

(Stop-based method)
Ranking (Stop-
based method)

***03643*** 0.09825689 1 0.558182 1
***04519*** 0.099072215 2 0.628764 2
***03636*** 0.099576107 3 0.752597 3
***03659*** 0.099875414 4 0.779598 4
***03637*** 0.100641924 5 0.823171 5
***03670*** 0.100710201 6 0.853321 6
***03689*** 0.100829396 7 0.879501 7
***03601*** 0.101147964 8 0.927403 8
***04502*** 0.101760268 9 0.942962 9
***04841*** 0.102657226 10 0.9449 10
***04511*** 0.102760537 11 0.94915 11
***03660*** 0.103254855 12 0.962066 12
***03663*** 0.103710112 13 0.965628 13
***03606*** 0.103852192 14 1.05283 14
***03607*** 0.105425101 15 1.163057 15
***03636*** 0.105427964 16 1.199316 16
***03664*** 0.106649642 17 1.370627 17
***03623*** 0.106771588 18 1.404297 18
***04815*** 0.107221141 19 1.736047 23
***03658*** 0.107759978 20 1.634979 20
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