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ABSTRACT
Travel activities are embodied as people’s needs to be physically
present at certain locations. The development of Information and
Communication Technologies (ICTs, such as mobile phones) has
introduced new data sources for modeling human activities. Based
on the scattered spatiotemporal points provided in mobile phone
datasets, it is feasible to study the patterns (e.g., the scale, shape,
and regularity) of human activities. In this paper, we propose
methods for analyzing the distribution of human activity space
from both individual and urban perspectives based on mobile
phone data. The Weibull distribution is utilized to model three
predefined measurements of activity space (radius, shape index,
and entropy). The correlation between demographic factors (age
and gender) and the usage of urban space is also tested to reveal
underlying patterns. The results of this research will enhance the
understanding of human activities in different urban systems and
demographic groups, as well as providing novel methods to
expand the important and widely applicable area of geographic
knowledge discovery in the age of instant access.
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1. Introduction

Modeling the basic laws of human mobility has become an important research question
in various fields such as physics, transportation, and geographic information science
(GIS). Researchers have employed different models to quantify the distribution of human
mobility indicators; however, most existing models (e.g., random walk and its numerous
derivatives) have concentrated on the displacement (i.e., step size) and direction dis-
tribution of human activities in abstract models; therefore, they are not directly applic-
able to quantify the distribution of other activity indicators, such as the size and shape of
human activity space, in a real geographic environment.

The measurement of activity space is a crucial topic when studying both the spatial
distribution of individual behavior and the aggregated activity patterns of urban sys-
tems. In urban geography, activity space is often defined as the local areas within which
people travel during their daily activities (Mazey 1981). Previous research focused on
measuring the size, geometry, and inherent structure of human activity space (e.g., the
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randomness of activity patterns), as well as the reasons why activity space forms
(Golledge and Stimson 1997). In practice, investigating the quantitative properties of
human activities often involves model fitting. An appropriate mathematical model
provides insights for many application areas, ranging from building a smart system in
urban planning and geography to a deeper understanding of the basic laws of human
activity in physics (González et al. 2008, Song et al. 2010). However, the modeling of the
distribution of activity space is still an ongoing process. In particular, the study con-
ducted by Kang et al. (2012) investigated the patterns of human activity from an urban
morphology perspective, where they calculated the radius of gyration (ROG) to repre-
sent the scale of user activity space, and correlated the ROG values with the size and
shape of corresponding cities. They further developed the spatial heterogeneity con-
strained Levy flight (SHCLF) model to simulate intra-urban human motion. Their results
provide valuable insights regarding the distribution patterns of human mobility and
confirm the relations between urban morphology and human mobility patterns; how-
ever, this study can be extended from two perspectives: (1) other aspects of human
activity (such as the shape and regularity) should also be explored to reveal more
detailed patterns; and (2) investigating the activity heterogeneity of different demo-
graphic groups provides valuable input for urban planners regarding the usage of
activity space in different population groups.

In the big data era, the datasets used in quantitative analyses evolved from limited
small data (e.g., socioeconomic survey data/human participant experiments) (Pendyala
et al. 1991, Harvey and Taylor 2000) to larger datasets contributed by the development
of information and communication technologies (ICTs) such as mobile phones. These
datasets usually cover a larger study area, therefore providing more comprehensive
evidence when studying the whole urban system (Yuan and Raubal 2012). Based on a
large call detailed record (CDR) dataset from China, this paper concentrates on the
distribution of human mobility from both computational (i.e., model-fitting) and geo-
graphical perspectives (i.e., spatial variations). We employ three indicators to represent
different aspects (scale, shape, and randomness) of activity behavior: (1) radius, (2) shape
index (SI, defined as 1-eccentricity, indicating the degree that an activity space deviates
from a straight line), and (3) entropy (indicating the degree of randomness; see Section
3.2.1 for detailed definitions). The first two measure the basic descriptive characteristics
of individual activity space, whereas the third one depicts the internal structure of
activity space by measuring the regularity of individual trajectories. The objective of
this study is to develop a deeper understanding of how individual activity spaces are
distributed from two perspectives: (1) From the methodological perspective, we explore
the possibility of utilizing a flexible and unified distribution (the Weibull distribution) to
model all three measurements and perform a comparison; (2) From the empirical
perspective, individual attributes in large-scale CDR datasets are often missing due to
privacy issues; the age and gender data utilized in this research provide valuable
information to investigate how activities correlate with the built environment and
individual attributes, in particular, exploring age and gender differences in activity
spaces. As illustrated, this work can also be considered as an extension of the work
conducted by Kang et al. (2012) from both methodological and empirical perspectives.
The interpretations of distributions provide informative input regarding the determining
characteristics of an urban system, as well as generating valuable resources for city
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planners to understand urban mobility patterns and travel demand (Fiore et al. 2014,
Yue et al. 2014). It also provides an opportunity to complement traditional mobility
models such as random walk (Rhee et al. 2011).

The remainder of this paper is organized as follows: Section 2 describes related work
in the areas of activity space modeling, mobile phone data analysis, human mobility, and
the Weibull distribution and its applications. Section 3 introduces the fundamental
research design, including the dataset description and the methodology. Section 4
presents the data analyses and discusses various aspects of the output in detail. We
conclude this research and present directions for future work in Section 5.

2. Related work

2.1. Studies on human activity space

Among all the activity-based research, the measurement of activity space is an impor-
tant topic when studying the spatial distribution of individual behavior. Activity space is
defined as the local areas within which people travel during their daily activities (Mazey
1981). There are several related concepts in this field, such as the action space, defined as
the collection of all urban locations about which an individual has subjective utility or
preference with (Horton and Reynolds 1971), the awareness space, which refers to the
places a household had knowledge of before searching for a new neighborhood (Brown
and Moore 1970), or space–time prism, defined as the set of points that can be reached
by an individual given a maximum possible speed from a starting point and an ending
point in space–time (Hägerstrand 1970). All these concepts facilitated the studies of
human activity space from both the qualitative and quantitative aspects. The former
includes social studies related to the definition, nature, and causes of human activities,
such as population segmentation and neighborhood assessment (Talen 1999, Knox and
McCarthy 2012, Silm and Ahas 2014). The latter one focuses on analyzing activity space
from a more computational perspective (e.g., by defining statistical and/or computa-
tional models). Generally, the quantitative measurement of activity space depicts its
basic characteristics, such as size and shape. For instance, Schönfelder and Axhausen
(2002) introduced the concept of intensity estimation to measure the probability of
areas visited by a certain person. They used confidence ellipses to approximate a travel
probability field for individual travelers. In González et al. (2008) and Song et al. (2010),
activity space is calculated based on the rotation of user trajectories, and the results
provided fundamental contributions to understand the basic laws of human mobility
(i.e., human activities are predictable). Salingaros (1998) formalized human activities as
nodes (e.g., home, work) and edges, and connected them within a network to model the
information exchange in an urban system. In addition, other studies also emphasized the
reasons of how activity space forms. For instance, as argued by Golledge and Stimson
(1997), there are three determinants of activity space for a given individual: (1) home
location; (2) regularly visited activity locations (points of interest – POIs) such as work,
grocery stores, gym, cinemas, etc.; (3) travel between and around POIs such as the
duration of movements between the regularly visited places. The combination of these
three factors can be used to describe the development of activity space, as well as
studying the causes and effects of human daily activities. Due to privacy issues, it is very
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challenging to acquire detailed daily activity information for a large number of the
population. As such, researchers have investigated the potential for utilizing various
georeferenced datasets like social networking data (Mennis and Mason 2011) and
mobile phone data (González et al. 2008) to approximate an individual’s activity space.
The activity space discussed in this research is approximated based on the locations of
connected cell towers. Previous studies have demonstrated the feasibility of using such
data to model general characteristics of activity space and urban-scale patterns
(González et al. 2008).

2.2. Modeling human activity and urban patterns from mobile phone data

Based on the scattered spatiotemporal points provided in typical mobile phone datasets,
it is possible to identify user trajectories through interpolation methods, as well as
studying the aggregated patterns of urban systems. In the urban planning field, the
development of ICTs has allowed for a new paradigm: smart cities, which concentrate on
employing ICTs to achieve sustainable economic development, a higher quality of life,
and a wiser management of natural and social resources (Caragliu et al. 2009, Miller
2009). This is best exhibited by the analysis of real-time cities by Ratti et al. (2007) and
the study of behavior analysis and spatiotemporal data mining by Gao et al. (2013). The
former focused on analyzing aggregated data from cell phones to better understand
urban dynamics in real time, while the latter extracted community structures and
provided a quantitative framework to identify clusters and interaction patterns.

Undoubtedly, these technologies are a major step forward in identifying and char-
acterizing the clusters, dynamics, and morphology of urban systems. As discussed in
Section 1, researchers have focused on the following three aspects when studying the
dynamics of urban mobility and the development of regional planning based on mobile
phone data, including but not limited to:

● Urban planning and morphology: The spatiotemporal characteristics of an urban
system can be viewed as a generalization of individual behavior; therefore, mobile
phone data also provide new insights into the analysis of the mobility patterns in
urban systems. Researchers believe that urban structure has a strong impact on
urban-scale mobility patterns, indicating that different areas inside a city are
associated with different inhabitants’ motion patterns (Gordon et al. 1989).
Phithakkitnukoon et al. (2010) further elaborated this research by discussing the
correlation between various urban units and mobility patterns.

● Urban clusters and spread: The issue of hotspot clustering patterns has been
addressed in numerous studies. For example, researchers have identified the
potential of employing mobile phone data in recognizing the clusters of crime
activities (Chainey et al. 2008, Traunmueller et al. 2014). Similar studies have also
been conducted in the transportation field to detect traffic congestion (Herrera
et al. 2010). In those analyses, hotspots are often defined as areas with ‘unusually
high occurrence of point incidents’, and the point observations are sometimes
transformed into area measurement, in which hotspots are defined as areas with
a high quantity or intensity for a specific attribute (Lu 2000). These density-based
analytics methods are usually developed to discover clusters in which the density
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of data exceeds a threshold, and to understand the overall trend of point density in
the study area (i.e., first-order effects).

● Urban rhythms: Although the extraction of aggregated patterns (i.e., hotspots and
clusters) offers valuable input for maintaining the sustainability of urban mobility, it
fails to provide sufficient information for understanding the ‘rhythm’ of an urban
system (i.e., analyzing these patterns with respect to time). The temporal dimension
is considered an important factor for most social activities, therefore understanding
the dynamics of the mobility patterns is essential for the management and plan-
ning of urban facilities and services. The objective of urban rhythm research is to
go a step beyond the aggregation of individual mobility (Schönfelder 2006, Yuan
and Raubal 2012, Hasan et al. 2013). For instance, by analyzing the time series of
mobility aggregation in different urban areas, Yuan and Raubal (2012) discussed
outlier time series associated with certain urban districts. In the real-time Rome
project (http://senseable.mit.edu/realtimerome/) conducted by the MIT SENSEable
City Lab, researchers also studied the temporal pattern of people gathering during
special events.

As indicated in Section 1, our research can be considered as an empirical study of the
first category. We explore how the central tendency and/or the dispersion of human
activities are distributed and how this distribution relates to the characteristics of
different cities and demographic groups. The results also provide computational support
for real-time city analysis in the age of instant access.

2.3. The distribution of human mobility

Borrel et al. (2006) summarized existing models, such as the basic random walk model
and its many derivatives, which describe basic laws of human activities. However,
researchers have distinguished between the two concepts: position and location. The
former refers to coordinates majorly captured by positioning technology, whereas the
latter refers to both the position and a place where the location belongs (e.g., a city, a
town, or a street) (Warf 2010, Groves 2013). There is a slight difference between studying
mobility patterns from a ‘physics perspective’ and a ‘geography perspective’: In physics,
individual trajectories are mostly structured and located in an abstract mathematical
coordinate system (not necessarily longitude and latitude); in geography, however,
individual trajectories are usually georeferenced within geographic/projected coordinate
systems and geocoded to a certain place (e.g., a specific city). The research conducted by
Liu et al. (2012) found that the direction distribution of human mobility should not be
modeled as evenly distributed as in Lévy flight models (Rhee et al. 2011), since human
activities are highly constrained by the morphology of an urban system. A recent study
by Jiang and Yin (2013) also demonstrates how quantitative measures may help to
reveal the internal structure of an urban system by introducing a new indicator (Ht
index). Additionally, in social and cognitive sciences, researchers have investigated the
complex nature of activity space with regards to social context, personal relations, and
emotions (Cheyne and Efran 1972, Mason and Korpela 2009).

Other research has investigated various types of distributions to explain the complex
nature of human activities, including but not limited to:
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● Power law distribution: Researchers utilized power law to model the distribution of
steps in classic random models (Borrel et al. 2006, Rhee et al. 2011).

● Exponential law distribution: Studies have shown that despite the fact that
power law has been utilized widely in theoretical studies, people’s intra-
urban travel in general follows the exponential law, which is often restricted
by the built environment in real-world applications (Candia et al. 2008, Kang
et al. 2012).

● Lognormal distribution: Azevedo et al. (2009) stated that the direction angle varia-
tion and the pause time follow a lognormal distribution. Jiang and Jia (2011) also
explored the possibility of applying various heavy-tailed distributions such as
lognormal distribution to model human movement patterns.

Although various distributions are applicable to human activity modeling, this research
utilizes the Weibull distribution to model the three measurements radius, shape index
(SI), and entropy for the following reasons:

● The flexibility of fitting into different shapes of curves: Mathematically it is more
applicable for comparison if the three indicators can be fitted using the same type
of distribution. Previous studies have demonstrated the capability of Weibull dis-
tribution to adapt into various curve shapes such as bell-shape curves and expo-
nential curves (Weibull 1951).

● The possibility of interpreting the model parameters from a spatial perspective:
Traditionally, Weibull distributions are most often used to analyze reliability and
survival temporally, but they are not widely utilized for modeling the spatial
dimension of human activities (Rinne 2008). One innovative contribution of this
research is to extend the interpretation of Weibull parameters to the spatial
dimension, i.e., from ‘survival in time’ to ‘accessibility in space’, which will be
discussed in detail in Sections 2.4 and 3.2.

2.4. Weibull distribution and its applications

As mentioned in Section 2.3, the combination of simplicity and flexibility in the shape of
the Weibull distribution makes it an effective model for various applications such as
industrial engineering (Weibull 1951). The probability density function (PDF) of the
Weibull distribution is defined as

fðx; λ; kÞ ¼ k
λ

x
λ

� �k�1
e�ðxλÞ

k

ðx � 0Þ; (1)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.
With k = 1, the Weibull distribution turns into an exponential distribution (see, the
Appendix for parameter estimation).

The most common application of the Weibull distribution is to model the life span
of an industrial or natural system. For instance, in reliability analysis, the shape
parameter k of the Weibull distribution is considered as an indicator of how the
failure rate of a system is proportional to a power of time (Rinne 2008). Here failure
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rate is defined as the frequency with which an item or system fails per unit of time
(Leitch 1995, Neubeck 2004).

● 0 < k < 1 indicates that the failure rate decreases over time, i.e., unreliable items
failing early and the failure rate decreasing over time.

● k = 1 indicates that the failure rate does not change over time, i.e., failure can
happen randomly at any point during the life span of a system.

● k > 1 indicates that the failure rate increases with time. This happens if the system
or the item aged out during the process.

Increasing the value of the scale parameter λ has the effect of stretching out the PDF to
the right side and decreasing its height (as well as the ‘peak’ of the PDF), since the area
under the curve should be constant (Figure 1).

Although traditionally the failure rate is defined from the temporal perspective,
in various fields such as physics and geography, the interaction between temporal
and spatial dimensions has provided theoretical and methodological support to
more comprehensively interpret human behavior (Ott and Swiaczny 2001).
Researchers have also explored the application of Weibull models in a variety of
application fields related to space and movement, such as the modeling of wind
speed in physical geography (Morgan et al. 2011) and precipitation data in hydrol-
ogy (Singh 1987). However, this method has not been fully addressed in the human
mobility field. In this research, we attempt to extend the indication of the Weibull
distribution to the spatial perspective to provide an informative interpretation for
activity space distributions.

Figure 1. Two Weibull distributions with the same shape parameter (k = 2) and different scale
parameters (λ = 1 and λ = 5).
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● The indication of shape parameter k: k indicates failure rate in the traditional
Weibull distribution. Similar to the definition of failure rate, we define ‘failure’
as ‘a certain individual failed to reach a higher level of activeness for a certain
mobility measurement (i.e., in this paper the three measurements are radius,
SI, and entropy respectively). For radius, ‘failed at 2 km’ indicates that the user
is willing to maintain a daily activity radius of 2 km (without expanding to a
broader region). When calculating the aggregated patterns, this can be con-
sidered as an indicator of spatial constraints at different scales for a given city
or a given population groups, i.e., for radius,
○ 0 < k < 1 indicates that the failure rate decreases when the radius increases,

i.e., inactive individuals failing within a small radius and the failure rate
decreasing over space (the distribution is heavy-tailed and people with a
large activity space are more persistent and willing to expand their activity
space).

○ k = 1 indicates that the failure rate does not change across space.
○ k > 1 indicates that the failure rate increases when the radius increases. This

happens when the urban system has more restrictions on large-scale activ-
ities (e.g., people with a large activity space are less persistent or unwilling
to expand their activities due to poor public transportation in suburban
areas).

● The indication of scale parameter λ: In the Weibull distribution, the scale para-
meter controls how much the distribution stretches to the right, which can be
considered as a measurement of both central tendency and dispersion, therefore
it is more comprehensive than using mode/mean/median values or variances
separately. For instance, when k is fixed, a population group with a larger λ value
for radius distribution has a larger mode value, and the radius range is more
dispersed.

In general, the scale parameter λ determines the magnitude of central tendency
and the variance of the given variable, while k controls how the variance is
distributed along with the value of a variable (generally, a smaller k indicates a
heavier-tail distribution and more outliers). Hence, the model parameters provide a
feasible method to interpret the mathematical characteristics of human activities at
an aggregated level. It is worth noting that each fitted distribution has certain
characteristics and affordances – things that it clearly represents versus things that
are difficult to examine based on a certain mathematical formulation. Similar to any
other distribution fitting, the power of the Weibull distribution is restrained by the
limited number of fitted parameters (i.e., λ and k). Therefore, it may not be able to
reflect the detailed spatial configuration of a study area. Instead, it represents the
absolute magnitude of a mobility variable (e.g., movement radius) and how the
variance of this variable is allocated along with the value, as well as providing a
subtle indication of how and why the spatial configuration of a study area may
result in such λ and k values. Table 1 provides example questions that may or may
not be answered based on the Weibull fitting.

8 Y. YUAN AND M. RAUBAL
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3. Research design

3.1. Dataset

The analysis in this research utilizes a dataset from China, covering around 4.3 million
people from 10 densely populated cities in province H located in northeast China
(Figure 2, due to a signed agreement with our data provider, descriptive statistics of
the involved cities can be mentioned; however, the official city names must be
removed). The dataset includes mobile phone connection records (both incoming and
outgoing calls) for a time span of 9 days (from 21 July 2007 to 29 July 2007). The data
include the time, duration, and approximate coordinates of mobile phone connections,
as well as the age and gender attributes of a majority of users.1 Table 2 indicates the

Table 1. Weibull distribution – example questions.
Condition: City X has a smaller k value and the same λ value as city Y for movement radius

Questions: Weibull fitting can answer Questions: Weibull fitting may be able to answer
(with additional urban planning data)

Questions: Weibull
fitting cannot
answer

Does this mean city X has more tail users
(users with a relatively large movement
radius)?

Does this mean in city X residents with a
relatively small movement radius are more
likely to expand their activity space
compared to long – commuters?

Does this mean city X facilitate long
commuting or maybe the local industry
requires more people to travel further?

Which direction do
users travel the
most in city X?
Which area(s) of
city X are the most
clustered?

Figure 2. The spatial distributions of: (a) ten cities; (b) the mobile phone towers in Province H.

Table 2. Metadata of the 10 cities.

City

Urban
area
(km2)

Built-up
area
(km2)

Average annual
income (104 Chinese

Yuan)

Urban area
population

(106)

No. of users
in dataset

(106)
No. of records
in dataset (10)

Percent of IDs with
age and gender

(%)

A 7086 336 2.16 4.75 1.70 90.45 84.64
B 4365 135 1.76 1.42 0.41 19.52 85.63
C 5107 169 2.97 1.28 0.66 26.49 96.23
D 1351 64 1.69 0.80 0.34 14.67 96.26
E 2300 79 1.73 0.91 0.27 13.34 95.31
F 1074 60 1.47 0.83 0.30 19.21 94.47
G 4551 43 1.86 0.68 0.19 9.26 98.33
H 1760 62 1.89 0.50 0.19 9.94 94.53
I 19567 159 0.97 0.81 0.09 2.91 95.75
J 2759 28 1.34 0.89 0.13 5.50 86.55
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basic information of the 10 cities in the dataset, including size, population of the built-
up area, average income2 and number of users/records in the city.

For each user, the coordinates of the nearest mobile phone tower are recorded both
when the user makes and receives a phone call, resulting in a positional data accuracy of
about 300–500 m in city centers.

It worth noting that the spatiotemporal data points recorded in mobile phone
datasets are neither accurate nor precise. First, the accuracy of positioning data often
depends on the density of mobile phone towers in the study area. In this study, the
estimation accuracy is higher for cities with a better coverage density of cell towers.
Second, the positioning data cannot represent the accurate movement trajectories of
each user, since the connected towers are recorded only when a phone-call connection
has been established, and during the time span when fewer phone calls occur (e.g.,
when a user sleeps or drives), the positioning information is not collected. Third, the
precision of spatial information varies for different datasets, e.g., a record such as
‘126.51551E, 45.15153 N’ is more precise than ‘126.52E, 45.15 N’.

Additionally, In CDRs one user may attempt to establish a large number of call
connections in a very short time span (e.g., a salesman may make 10 phone calls within
30 min in the office; however, it is not sensible to assume that the salesman visits the
office 10 times within 30 min) (Yuan and Raubal 2014). Hence, we eliminated the
repeated phone calls made by the same user based on the following rules: For any
two consecutive points pi and pi+1 in a given trajectory, if pi and pi+1 are located within
the cell of the same mobile phone tower, and the time difference ti+1 – ti < ΔT (ΔT is a
threshold value, in this paper pre-defined as 0.5 h), pi+1 is defined as a redundant point
and removed. After eliminating the redundant records, we defined each of the remain-
ing records as one ‘occurrence’ or ‘visit’ of a certain user. In this paper, all mobility
measures are based on this definition.

Another point worth noting is the potential representativeness bias in CDR data. As
demonstrated in previous studies (Fuchs and Busse 2009, Forbes 2014), big (geo)data
such as location-based social media (LBSM) and georeferenced mobile phone data all
have different representativeness issues and sampling biases across various population
groups. First, people with limited phone activities are under-represented in CDR data. In
this research, we eliminate users who had fewer than 10 phone calls during 9 days.
Figure 3 demonstrates the distribution of phone call frequency in the remaining sample
set. As can be seen, the majority of the population made 10–50 phone calls during the
time span of the study, providing a calculable number of sample points for each user
when computing the movement indicators in Section 3.2 (e.g., the activity space of users
with only two sample points cannot be approximated as an ellipse). Another potential
bias comes from the under/over-representation of demographic groups. For instance,
the ratio between males and females in the sample set is 1:1.20, which is lower than the
gender ratio (M:F = 1:0.96) published in the official statistical year book of province H
(citation removed as requested by the data provider). This is potentially due to the
higher call frequency of female users. Similar patterns exist for other age groups (‘0–14’:
‘15–64’: ‘>64’ = 1:1124.6:15.8). Compared to the official statistics (‘0–14’:‘15–64’:
‘>64’ = 1:5.94:0.69), the age group ‘0–14’ is heavily underrepresented due to the fact
that children and teenagers younger than 14 years old are can rarely own a mobile
phone in China. However, despite the potential sampling biases, this large set still
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ensures a statistically reasonable sample size (>5000) for each demographic group to
conduct aggregated-level analyses in Section 4.2.2. Additionally, due to the wide usage
of mobile phones, CDR data often provide a better demographic representation than
LBSM data (Instagram, for instance, particularly attracts adults between the ages of 18
and 29, women and urban dwellers (Forbes 2014)). The detailed analyses on demo-
graphic groups are illustrated in Section 4.2.2.

3.2. Methodology

3.2.1. Defining indicators
Historically, activity space is measured based on various types of methods from an
ellipse-based representation which focuses on both shape and directional distributions,
e.g., standard deviational ellipse, radius of gyration (Song et al. 2010), a convex hull-based
representation which outlines the shape of activity space (Harding et al. 2012), a density-
based representation which provides more details for internal structure, to a network-
based representation which utilizes road network data to construct paths between
points (Sherman et al. 2005). As discussed in Section 2.2, activity space is characterized
by both external descriptive statistics (e.g., shape, size) and internal structures (e.g.,
regularity). This research represents three aspects – – scale, shape, and randomness – –
of activity behavior (Yuan et al. 2012). ‘Scale’ and ‘shape’ measure the basic descriptive
characteristics of individual activity space, whereas ‘randomness’ depicts the internal
structure of activity space by measuring the regularity of individual trajectories. As
illustrated in previous research, the eigenvector-based approaches are capable of cap-
turing both the magnitude and directional distributions of human mobility.

Radius. For each individual, we approximate the physical movement area based on the
rotation of user trajectories (González et al. 2008). The eigenvectors of trajectories deter-
mine the principal axes ê1 and ê2, then the trajectories are approximated as ellipses, where

Figure 3. The distribution of phone call frequency.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
5:

59
 1

3 
Fe

br
ua

ry
 2

01
6 



ê1 and ê2 are the major and minor axes (Figure 4). For a given ellipse, the average value of
the semi-major and semi-minor axes is considered as a measurement of moving radius:

R ¼ jê1j þ jê2j
4

: (2)

Shape index (1-eccentricity). Because user trajectories are approximated as ellipses,
the movement eccentricity represents how much a particular trajectory deviates from
being circular:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð ê2j j

ê1j j Þ
2

s
; e 2 ½0; 1�: (3)

For instance, if e � 1, it is highly possible that the particular person mostly moves
between work and home; therefore, the trajectory is close to a regular straight line. Here
we are more interested in the bimodal nature of human trajectories, i.e., the fact that
most people move between two major POIs in their daily life (Bagrow and Koren 2009).
We use 1-eccentricity to represent how the movement deviates from a straight line,
defined as the SI in our analysis.

Entropy. Entropy characterizes the heterogeneity of visitation patterns. Based on Song
et al. (2010), movement entropy is calculated as

E ¼ �
XN
i¼1

pilog2pi; (4)

where pi is the probability that location i is visited by the user. N stands for the total
number of distinct locations visited in a given trajectory (note that here the locations are
only distinguished by coordinate pairs). For example, if a given person A has only visited
the two locations P1 and P2 in the dataset, and each location has been visited five times,
the entropy value is calculated as

EA ¼ � ð0:5 � log20:5þ 0:5 � log20:5Þ ¼ 1:0: (5)

Figure 4. Transformation of trajectories (González et al. 2008).
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3.2.2. Fitting weibull distributions
This research utilizes the Weibull distribution to model the distribution of three indica-
tors defined in Section 3.2.1. The probability density function is defined in Equation 1.
The second step is to construct Weibull distribution models for the three indicators and
interpret the variation among age and gender groups. As shown in Section 2.4, the scale
parameter λ determines the magnitude of central tendency and the variance of the
given variable, while k controls how the variance is distributed along with the value of a
variable. Hence, the modeling parameters for each city provide a feasible method to
compare the characteristics of cities by interpreting the distribution of their residents’
activities. Section 4.1 depicts the model fitting process.

3.2.3. Exploring demographic factors
As stated by Beckmann (2000) and Nobis et al. (2005), human mobility patterns are
restricted by individual level factors (e.g., age and gender) and ‘supra-individual
regime,’ which include temporal order (e.g., day and night, the seasons), social
conditions (e.g., economic, legal, cultural, and political regulations) and physical
configurations (e.g., spatial distribution of urban infrastructure, and transportation
networks). Here, we are also interested in how activity space correlates with
explanatory factors (e.g., age, gender, and the built environment). Section 4.2
focuses on exploring the similarity and distinctions among age and gender groups
in the usage of different urban regions. Kernel density plots are utilized to visualize
the clustering patterns of different demographic groups. Since the distinction of
urban and suburban area plays a crucial role in land use studies (Lewis 1959, Ahas
et al. 2010), we also quantify the visiting patterns in urban and suburban areas for
age and gender groups.

4. Analyses, results, and discussions

4.1. Model fitting

First the distributions are explored visually: the PDF of the three indicators are plotted in
Figure 5. There are various types of distributions available for model fitting, such as
skewed normal distribution or exponential distribution.

As discussed in Section 2.3, mathematically, it is easier to make a comparison if the
three indicators can be fitted using the same type of distribution. In addition, the
indication of the Weibull distribution (i.e., shape and scale parameters) extended from
survival analysis opens a new perspective to quantitatively interpret human mobility
patterns in cities. The model fitting results are listed in Table 3. Here we also employ the
one-sample Kolmogorov–Smirnov Test to validate the goodness of fit. The constructed
models passed the test at significance level p = 0.01.

The results in Table 3 can be interpreted from two perspectives: cross-indicator and
cross-city (i.e., compare the fitted k and λ values horizontally and vertically in Table 3).
Tables 4 and 5 list the theoretical and empirical indications of the model parameters.
The former presents uniform patterns that exist among all 10 cities (or the majority of
the 10 cities) regardless of the specific spatial setting of a certain city, whereas the latter
focuses on the detailed and specific differences between cities. Note that it is less
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meaningful to compare magnitude or dispersion between different variables (i.e., the λ

values) when the shape parameter k varies, so Tables 4 and 5 focus on illustrating the
indication of k values.

As can be seen, the model-fitting based on the Weibull distribution presents a
method to mathematically model the distribution of activity space, which provides
valuable input for urban-related studies. It is also feasible to identify outlier patterns
based on Figure 5. For instance, city I behaves very differently compared to the other 9

Figure 5. The PDF of the three measures: (a) radius; (b) SI; (c) entropy.

Table 3. The parameters of the Weibull distribution.
k1

(Radius) λ1 (Radius)
k2
(SI)

λ2
(SI)

k3
(Entropy) λ3 (Entropy)

A 1.13 2.62 0.57 0.07 2.41 2.64
B 1.13 1.96 0.57 0.08 2.74 2.4
C 1.03 3.25 0.48 0.05 2.33 2.51
D 1.37 1.24 0.62 0.09 2.64 2.5
E 1.15 1.84 0.41 0.05 2.10 2.13
F 1.18 1.52 0.51 0.07 2.42 2.32
G 1.35 1.65 0.52 0.07 2.52 2.27
H 0.98 2.06 0.32 0.02 1.98 2.02
I 0.73 2.96 0.22 0.01 1.86 1.58
J 1.03 2.65 0.33 0.04 2.13 1.94
Average 1.11 2.18 0.46 0.055 2.31 2.23

14 Y. YUAN AND M. RAUBAL

D
ow

nl
oa

de
d 

by
 [

E
T

H
 Z

ur
ic

h]
 a

t 0
5:

59
 1

3 
Fe

br
ua

ry
 2

01
6 



cities for all three measurements, which indicates the potential for interesting constella-
tions in urban patterns as illustrated.

4.2. Gender and age analysis

As mentioned in Section 1, human activities are restricted by a multitude of factors,
including super-individual factors such as the built environment (e.g., cities), and
individual-level factors such as age and gender. Based on these factors, it is feasible
to identify particular patterns for population groups categorized by social
attributes.

The remainder of this section focuses on analyzing how individual and super-indivi-
dual factors affect the distribution of mobility patterns based on the Weibull distribution.
Since it is not feasible to discuss the impact of all explanatory factors, we specifically
consider two individual level factors (age and gender).

Table 4. Interpretation of Weibull parameters (cross-indicator).
Model
parameter Theoretical indication Empirical indication

k1 ≈ 1 The distribution of the radius is close to an
exponential distribution, which further addresses
the arguments from previous research regarding
the power law distribution of human movements
(Kang et al. 2012). The failure rate is close to
constant when the radius increases.

The distinct k values of the three indicators (i.e.,
k1 ≈ 1, k2 < 1, k3 > 1) provide quantitative support
to compare the empirical distributions of human
activities from different perspectives. For instance,
the failure rate is constant for radius k1 ≈ 1 and
indicates that the spatial setting of the cities in the
sample set potentially allows short-commuters to
expand their movement radius as much as long-
commuters. For SI (k2 < 1), a decreasing failure
rate shows that unlike radius, the majority of the
population maintain (fail at) a very small SI value
(i.e., activity close to a straight line). However,
those who maintain a large SI (closer to a circle),
are more likely to further increase the SI of their
activity space compared to users with a smaller SI.
This pattern exists for all 10 cities regardless of city
settings and is potentially due to the bimodal
nature of human mobility – human beings tend to
maintain two major destinations (areas) in their
daily life (Bagrow and Koren 2009). For movement
entropy, k3 > 1 indicates that low-entropy users
are more likely to explore and increase the
randomness of their activities; however, as entropy
further increases, their potential of further
expanding the randomness of activities decreases.
Note that the increasing of SI and entropy are not
necessarily correlated, since people who maintain
a round-shaped activity space can also have fixed
daily routes and low entropy values. This result
can be utilized to better simulate human behavior
in travel analysis and agent-based modeling.

k2 < 1 The decay of SI is faster than exponential and the
failure rate decreases when SI increases.

k3 > 1 The distribution of entropy is similar to a skewed
normal distribution and the failure rate increases
when entropy increases.

λ values λ values are mostly used to compare the magnitude
and dispersion of each distribution when the k
values remain the same; hence, theoretically it is
not meaningful to cross-compare λ values for
different variables.

N/A
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Table 5. Interpretation of Weibull parameters (cross-city).
Model parameter Theoretical indication Empirical indication

k1X < k1Y <1
(in this table, kiX, kiY
indicate the ki values
of cities X and Y,
i = 1,2,3)

The failure rate of X decreases faster
than Y when the radius increases.

City X indicates a faster decay in the beginning of
the curve with persistent outliers who are more
likely to further expand their movement radius. For
instance, city I has the lowest shape parameter (k1)
among all 10 cities. A potential interpretation is that
city I is a very special case where the majority of the
area that falls within the administrative boundary is
covered by forests, with a central urban area and
multiple small towns/villages located in forests.
These increased spatial constraints result in the
decreased potential of random movement from
much of the population of this ‘Forest City’, as it is
known by its residents. However, a small portion of
the residents have to commute between the city
and its surrounding villages. This potentially
resulted in the heavy-tailed distribution and a low
shape parameter for movement radius.

k1X > k1Y >1 The failure rate of X increases faster
than Y when the radius indicator
increases.

Compared to city Y, users with a smaller radius in
city X are more likely to explore and increase the
spatial coverage of their activities; however, as the
radius further increases, their potential of further
expanding the movement scale decreases. This may
happen when the city has a fully functioning
downtown area and a smaller portion of outlier
population (e.g., long commuters), such as cities D
and G – where users are less likely to travel to
suburban areas (this finding is further confirmed by
the urban/suburban ratio analysis in Section 4.2.2).

k1X <1< k1Y The failure rate of X decreases
whereas the failure rate of Y
increases when the radius indicator
increases.

Similar to the first two cases, city X indicates a faster
decay in the beginning of the curve and a heavy-
tailed distribution with persistent outliers who are
more likely to further expand their movement
radius, whereas in City Y, users with a smaller radius
are more likely to explore and increase the spatial
coverage of their activities.

k2X < k2Y <1 The failure rate of X decreases faster
than Y when the SI indicator
increases.

City X indicates a faster decay in the beginning of
the curve and a heavy-tailed distribution for SI.
However, those who maintain a large SI are more
likely to further increase the SI of their activity
space (closer to a circle). For example, city I also has
the lowest shape parameter for SI (k2) among all 10
cities. This is potentially due to the special life style
in a forest city that people have to visit multiple
destinations for basic living needs (instead of
following a bimodal movement pattern between
home and work).

k3X > k3Y >1 The failure rate of X increases faster
than Y when the entropy increases.

Compared to city Y, users with smaller entropy
values in city X are more likely to explore and
increase the spatial coverage of their activities;
however, as entropy further increases, their
potential of further expanding the movement
randomness decreases. For example, city B has the
highest k3 value among all 10 cities, indicating that
the residents in this city prefer to explore new
places when their entropy value is low (close to 0);
however, there is a smaller portion of tail users with
very large entropy values (i.e., people who travel
more randomly, such as a salesman.)

(Continued )
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4.2.1. Fitting distributions by age and gender
Figure 6 shows an example plot between age and average radius for each age group
in city A. As can be seen, the heteroscedasticity appears to be much larger at both
ends of the curve (where age <16 and age >70). One reason for this is that these two
groups have lower sample sizes compared to other age groups; therefore, the data
appear to be less stable. Another potential reason is that individuals below age 16
are considered as ‘no capacity’ or ‘with limited capacity’ for civil conduct in the
Chinese legal system (http://www.shenzhenlawfirm.com/fg-e/general-01.htm); hence,
they are not fully responsible for themselves financially and their activity patterns
may partially reflect the wills of their legal guardians (i.e., parents) instead of their
own (e.g., attend a book club after school instead of go partying). Although there is
no upper age limit for civil conduct in China, the average life expectancy at Chinese
retirement age (60) is 79 (http://apps.who.int/gho/data/?theme=main&vid=60340). To

Table 5. (Continued).

Model parameter Theoretical indication Empirical indication

λ values A larger scale factor indicates a more
dispersed distribution if the shape
factor remains the same.

This can be best demonstrated by city A and city B
in Figure 5(a), where city A shows a lower maximum
point and a larger scale parameter compared to city
B. Note that all distributions in Figure 5(a) have a
maximum point, which occurs between 0.5 and
1.5 km for different cities, indicating that there are
only a few people who maintain a very small radius
(<0.5 km). The occurrence of maximum points can
be influenced by various factors such as the size,
shape, and economical status of the urban system.
This is consistent with the findings in Kang et al.
(2012), where the authors demonstrated that the
PDF of movement radii first reaches a maximum
point, and then the decay follows an exponential
distribution.

Figure 6. Correlation between age and radius in city A.
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eliminate the heteroscedasticity and noise effect in the data, here we only consider
individuals between ages 16 and 70 when constructing the regression models
regarding age.

Figure 7 plots the correlation between age (16 ≤ age ≤70) and the average explana-
tory variables (radius/shape index/entropy) for both male and female users. The data are
aggregated for 10 cities. Because the curves appear to be nonlinear, we also fit in a
quadratic polynomial regression for each curve (solid line). Table 6 summarizes the
descriptive statistics for Figure 7.

As can be seen, all three measurements indicate a similar pattern where the
dependent variable first increases then decreases when the explanatory variable – –
age – – increases. Note that the fitted lines only indicate general trends of the
three variables, but the extreme values of the original lines appear to be in
different age groups for three variables: mid-30 years for radius, mid-40 years for
SI, and oscillate between mid-20 years to mid-40 years for entropy, indicating that
middle-aged people show a more active mobility pattern (larger activity space,
larger deviation from a straight line, and most random visiting patterns).
However, the randomness of activities appears to be high for a wider age group
(mid-20 years to mid-40 years). In addition, there appear to be noticeable differ-
ences between male and female users. As shown in Figure 7, male phone users
have a larger activity space and a higher shape index and randomness than female

Figure 7. Correlation between age and the three indicators: (a) radius; (b) SI; (c) entropy.
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users, indicating that male users are more active regarding their physical move-
ment. These results demonstrate a more comprehensive picture compared to pre-
vious studies for only one city (Yuan et al. 2012).

Similar to Section 4.1, in order to better interpret the probability distribution for
males and females, as well as differences between age groups, we also fit the Weibull
distribution to the following demographic groups:

● Male/female, 16 ≤ age ≤ 17: this group is considered as teenagers.
● Male/female, 18 ≤ age ≤22: college students.
● Male/female, 23 ≤ age ≤ 40: young professionals.
● Male/female, 41 ≤ age ≤ 59: middle-aged professionals.
● Male/female, 60 ≤ age ≤ 70: This group is considered as retired, due to the fact that

the official retirement age in China is 60 for most professions.

Table 7 shows that both the shape and scale parameters regarding the radii of females
are slightly smaller than those of males, indicating that male users in general have a
larger activity space than females, which is consistent with the results shown in Figure 7.
This is potentially due to the fact that the employment rate for males is substantially
higher than that for females in China (79% versus 65% in 2007), which leads to the result
that males serve as a more active labor force and maintain a higher mobility level (http://
data.worldbank.org/indicator/SL.TLF.CACT.MA.ZS?page=1, http://data.worldbank.org/
indicator/SL.TLF.CACT.FE.ZS?page=1). Note that the correlation between employment
and activity patterns is only a hypothesis and aims to provide a preliminary indicator for
social scientists. An extended analysis between occupation type and activity level is

Table 6. The descriptive statistics of three measurements for males and females.
Male Female

Quadratic parameter (radius) –1.38 –0.798
Extreme point (radius) 36 28
Quadratic parameter (SI) –2.37 e-05 –1.86 e-05
Extreme point (SI) 43 41
Quadratic parameter (entropy) –0.000886 –0.000724
Extreme point (entropy) 39 37

Note: In a quadratic polynomial regression y = ax2+bx+c, the quadratic parameter a controls the shape of the curve, the
smaller the absolute value of a is, the closer the curve is to a straight line.

Table 7. Comparison of parameters between age and gender.
k1

(Radius) λ1 (Radius)
k2
(SI)

λ2
(SI)

k3
(entropy) λ3 (entropy)

Male (16–17) 0.94 2.15 0.43 0.05 2.22 2.15
Female (16–17) 0.95 2.17 0.42 0.05 2.23 2.14
Male (18–22) 1.01 2.26 0.48 0.06 2.38 2.31
Female (18–22) 1.00 2.25 0.49 0.06 2.41 2.32
Male (23–40) 1.06 2.61 0.48 0.06 2.28 2.48
Female (23–40) 1.05 2.45 0.49 0.06 2.34 2.45
Male (41–59) 1.06 2.45 0.49 0.06 2.33 2.47
Female (41–59) 1.04 2.16 0.49 0.06 2.37 2.39
Male (60–70) 1.02 2.02 0.41 0.05 2.23 2.19
Female (60–70) 0.98 1.85 0.40 0.05 2.16 2.14
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needed to prove this assumption, which is beyond the scope of this study. Although a
Kolmogorov–Smirnov test between gender groups shows statistical significance at the
p = 0.01 level, there is no substantial difference regarding the model parameters of SI.
The statistical significance of such small differences is majorly due to the large sample
size in the case study, which is an inevitable issue in big data analytics.

Regarding the age groups, in general, teenagers and seniors have the lowest shape
parameters for all three measures, indicating that these two groups have the heaviest
tails (i.e., users clustered at a small value; however, for users with a larger mobility
indicator, they are more persistent than other groups and have more outliers). Young
and middle-aged professionals have the largest shape parameters, indicating that this
group is the least heavy-tailed and has the lowest percentage of outliers. This can be
due to multiple reasons: on the one hand, the differences in sample sizes are an
inevitable factor; on the other hand, it is possible that the majority of young and
middle-aged professionals are employed so the user profiles are less diverse (employ-
ment rate >90%, https://stats.oecd.org/Index.aspx?DataSetCode=LFS_SEXAGE_I_R). For
scale parameters, it can be seen that middle-aged males have the highest randomness
and largest activity space. This is another demonstration of the hypothesis regarding
employment and activity patterns. Note that the level of randomness is calculated
individually but the assumption of outliers is argued based on the distribution of a
group, so they are not necessarily related to each other.

4.2.2. Age, gender and the built environment
The development of urban systems partitions the earth into different administrative
districts with boundaries that restrict individual behaviors, such as configurations and
social conditions (Ahas et al. 2015). As discussed in Section 2, due to privacy issues, the
differences of urban space usage among demographic groups are rarely addressed in
CDR data analysis. There have been several studies on modeling urban dynamic patterns
from mobile connection datasets (e.g., the real time Rome project at the MIT SENSEable
Lab1), but our research focuses on extracting the implications of various clustering
patterns for demographic groups. This can provide fundamental support for urban
planners to acquire first-hand movement information of population groups, as well as
relating these patterns to the distribution of urban infrastructures and the Weibull
fittings in Section 4.2.1.

First the division between urban and suburban areas in 10 cities is defined based on
the LandScan 2008 population data (http://web.ornl.gov/sci/landscan/), which specifies
worldwide population density at 1ʹ’ resolution. Here the largest region with top 3%
population density is classified as urban area in each city. We also applied a low-pass
filter to eliminate noise (Figure 8).

Table 8 demonstrates the ratio between urban and suburban visiting frequencies for
different age and gender groups (‘urban/suburban ratio’), which is utilized as an indi-
cator to show users’ visiting preferences in different urban areas, i.e., a higher urban/
suburban ratio indicates that a certain group’s activities are more ‘urban-oriented’ and
less ‘suburban-oriented’. Note that no time filtering is applied in this analysis (i.e., all data
are included), as we are looking at general patterns across age/gender groups, not for
patterns during a specific time span. As indicated in Table 8, there is no consistent
pattern of urban/suburban ratio across age groups, i.e., in certain cities teenagers and
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seniors visit the urban area the most; however, in other cities, young and middle-aged
professionals visit the urban area the most. The 10 cities in this study have very distinct
urban functionality divisions, which potentially leads to the distinct visiting patterns of
urban/suburban areas in age groups. For instance, city A is the home of more than three
national/regional universities which are all located in the urban area; hence, the college
students group appears to be the most ‘urban-oriented’ group. Another example is city
C, where the local economy highly depends on petroleum and related industries. A large
number of young and middle-aged professionals work in the oil fields in the suburban
area, which explains their lower urban/suburban ratio.

However, the urban/suburban ratios of males and females are tested to be
significantly different in all 10 cities (based on Wilcoxon signed rank test, significance
level p = 0.01). Male users appear to visit urban areas more frequently than females.
In other words, males are more active in general (possibly due to the social obliga-
tions of being employed); however, females have more access to the suburban areas
possibly due to social duties such as taking care of the family. This case study aims
to provide an initial insight on how the investigation of movement patterns of
demographic groups can provide informative data for urban planners. Future
research should look into more detailed patterns in each city and correlate these
with different urban infrastructures.

On the other hand, the magnitude of urban/suburban ratios also varies substantially
for different cities. A higher urban/suburban ratio indicates a more concentrated plan-
ning pattern (such as in cities D and G), and the residents have less access to the

Figure 8. City A urban-suburban division (a) before filtering; (b) after filtering.

Table 8. Urban–suburban visiting frequency ratio by age and gender.
16–17 18–22 23–40 41–59 60–70 Male Female

A 2.26 3.25 3.02 3.16 2.50 3.18 2.99
B 2.11 2.66 2.91 2.99 3.71 3.16 2.73
C 1.67 1.55 1.55 1.46 1.68 1.57 1.49
D 7.26 6.29 5.88 6.10 6.01 6.40 5.71
E 2.58 2.63 2.07 2.03 1.81 2.21 2.00
F 1.91 2.39 2.36 2.49 2.51 2.47 2.36
G 6.79 6.89 6.49 7.00 5.94 7.12 6.34
H 2.47 2.25 2.31 2.44 2.05 2.51 2.22
I 1.87 2.08 1.94 2.10 2.62 2.17 1.92
J 1.23 1.51 1.97 2.44 1.78 2.19 1.91
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suburban area. This may be the result of various factors, such as the spatial distribution
of work opportunities, residential areas, education institutes, transportation infrastruc-
ture, recreational facilities etc., which is beyond the scope of this research.

To cross-validate these findings from a few case studies, we also plotted the kernel
density estimation in city A (Figure 9) for five age groups (16–17, 18–22, 23–40, 41–59,
and 60–70) during 2–5 pm (To be consistent with the CDR spatial accuracy in Section
3.1, here we utilize a search radius = 500 m). Although all age groups indicate
clustering in the city center and the northwestern region, the oldest age groups
(41–59 and 60–70) show more spread patterns, whereas the young professionals
(23–40) show a focused cluster in the city center. This is consistent with the finding
in Section 4.2.1 that the activity space measurements of seniors are more heavy-tailed
distributed with more variations in daily activities (e.g., possibly due to less scheduling
constraints after retirement). Another interesting pattern is the cluster of college
students on the south side of the city, where several national and regional universities
are located.3 This further confirms the indication of Table 8 that the spatial distribution
of different age groups tightly connects with the functionality of urban divisions and
the availability of facilities (e.g., education facilities for students, employment oppor-
tunities for professionals, and leisure facilities for the retired).

To cross-validate the findings in Figure 9 and demonstrate that city A is not a special
case in the sample set, we also plot the clustering patterns of two age groups (18–22
and 23–40) in a smaller city E with urban population less than 1 million (due to page
limitation we are not able to plot the densities for all 10 cities). As shown in Figure 10,
the college students group in city E also demonstrates a cluster which deviates from the
city center and is consistent with the locations of higher education institutes in this city.

Similarly, Figure 11 plots the distribution for males and females in city A. As can be
seen, during regular work hours (2–5 pm), females show a higher spread pattern than
males. This provides an informative addition to the findings in Section 4.2.1 and Table 8,
where the distribution of females appears to be more widespread. Although from

Figure 9. Kernel density distribution of age groups in city A.
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individual perspective, male phone users appear to have a larger activity space, and a
higher SI and randomness than female users, from an urban perspective female users are
more spread out and tend to make use of a wider range of urban areas. A potential
explanation may involve a deeper investigation of the societal roles of gender groups in
Chinese society. For instance, the higher occurrence of females in a suburban area (with
smaller movement radii) may indicate that they are more family-oriented.

4.3. Discussion of uncertainty

Finally, it is important to highlight that there are different aspects of uncertainty related
to human activity studies. These issues arise in our data mining process in different ways
(Xia 2005, Yuan et al. 2012), including but not limited to:

● Natural variability of human activities: Although human mobility seems to be
highly predictable (González et al. 2008, Song et al. 2010), randomness is an
inevitable part of human motion.

● Inaccuracy/imprecision due to the limitation of available data. As discussed in
Section 3.1, positional inaccuracy, sampling resolution and imprecision all contri-
bute to the uncertainty of the data source.

● Imperfection of models and algorithms: As Box and Draper (1987, pp. 424) stated:
‘Essentially, all models are wrong, but some are useful’. In this research the Weibull
distribution is adopted to interpret the distribution of human activities, due to the
fact that it is flexible to fit into curves with distinct shapes and conduct cross-
variable comparisons. For a single variable, other models may be applicable such as

Figure 10. Kernel density distribution of age groups in city E.

Figure 11. Kernel density distribution of gender groups in city A.
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the lognormal distribution. The application of different models will inevitably have
an impact on the uncertainty of the results. Another distinction worth noting is that
between ‘statistically significant difference’ and ‘substantial difference’ (i.e., large
difference in magnitudes). Due to the large sample size utilized in this research,
small differences can be tested as ‘statistically significant’. In future studies, it will
be helpful to cross-validate the results with other data sources to test their
robustness.

5. Conclusions and future work

ICTs have become increasingly influential in our society. The broader impacts of this
research will yield an enhanced understanding of human activities for different urban
systems and demographic groups, as well as provide novel methods for expanding the
important and widely applicable area of geographic knowledge discovery. Mobile phone
data used as an input in the analysis of human mobility has the potential to transform
research in diverse fields, such as geography, transportation, planning, and economics.

The first contribution of this research comes from the methodology perspective when
analyzing the mathematical distribution of mobility indicators. We explored the feasi-
bility of applying existing methods (the Weibull distribution) to novel topics that have
not been applied in the area of human mobility modeling. The indication of the Weibull
distribution was extended from the temporal to the spatial dimension. We discovered
the differences among age groups regarding the performance of tail (outlier) users from
shape indices, which was further demonstrated by the density plots in Figures 9–11. The
effectiveness of this model fitting was tested thoroughly based on a sample data set,
which provides a valuable reference for future studies based on other georeferenced
mobile phone datasets. The results demonstrate that this method is particularly suitable
for comparing distributions with distinct shapes. The methodologies addressed in this
research can also be extended to analyze similar datasets acquired from various social
media, e.g., volunteered geographic information on Twitter or Facebook.

The second contribution consists of the various types of empirical results presented in
Section 4 to analyze the spatial distribution of demographic groups. Three measure-
ments were first defined to investigate the characteristics of user activity space. We also
explored the correlation between activity spaces and various demographic factors, such
as age, gender, and the built environment. This model fitting is informative for inter-
preting the distribution of activity space for different population groups. The case
studies in Section 4.2.2 explored the usage of urban space in demographic groups
and discovered that it is highly likely that the spatial distribution of different age groups
tightly connects with the functionality of urban divisions and the availability of facilities.
We also discovered significant differences between males and females regarding the
visiting frequency of urban and suburban areas.

The results of this research will provide references to help policy makers understand the
characteristics of individual mobility, as well as update environmental and transportation
policies. For instance, we discovered the differences in urban and suburban visiting patterns
between male and female users, and demonstrated the connections between specific urban
facilities and the mobility patterns of various age groups. Due to page limitation, Figures 9–
11 utilized cities A and E as an exemplary analysis instead of plotting all 10 cities in the
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whole dataset. Future research directions include the validation of models for other cities
and countries, and the comparison between different models. For follow-up studies it will
be necessary to explore how explanatory variables, such as the cultural background or the
shape of an urban system, impact the model fitting process. Another direction for future
research is re-classifying urban divisions based on the usage of urban space by demographic
groups. In addition, several potential methods can be adopted to quantitatively measure
the described uncertainty issues, such as probability theories, Bayesian networks, and fuzzy
sets. The designed methodologies and the extension of the Weibull models can also be
applied to other types of big (geo)data, such as crowed-sourced LBSM, volunteered geo-
graphic information, and taxi trajectories from GPS devices.

Notes

1. When opening a new phone line, users can choose to provide or not provide their citizen ID
which includes both the gender information and the date of birth. Detailed data are listed
in Table 1.

2. China Statistical Yearbook, National Bureau of Statistics of China, 2008.
3. This conclusion was derived based on the landmarks on Google™ Map. Based on the

request of data provider we are not able to provide the identifiable base maps from
Google™ Map.
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Appendix. Estimating parameters for Weibull distribution

Normally, the parameter estimation of a two-parameter Weibull distribution can be achieved by
maximum likelihood estimation (MLE). The MLE functions for shape parameter k and scale
parameter λ are defined as

λ̂k ¼ 1
N

XN
i¼1

ðxik � xkNÞ (1)

k̂�1 ¼
PN
i¼1

ðxki ln xi � xkN ln xNÞ
PN
i¼1

ðxki � xkNÞ
� 1
N

XN
i¼1

ln xi (2)

where x1, . . ., xk are sample values and N is the number of sample points.
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